IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p241-252.html
   My bibliography  Save this article

Logistic regression analysis of two‐phase studies using generalized method of moments

Author

Listed:
  • Prosenjit Kundu
  • Nilanjan Chatterjee

Abstract

Two‐phase designs can reduce the cost of epidemiological studies by limiting the ascertainment of expensive covariates or/and exposures to an efficiently selected subset (phase‐II) of a larger (phase‐I) study. Efficient analysis of the resulting data set combining disparate information from phase‐I and phase‐II, however, can be complex. Most of the existing methods, including semiparametric maximum‐likelihood estimator, require the information in phase‐I to be summarized into a fixed number of strata. In this paper, we describe a novel method for the analysis of two‐phase studies where information from phase‐I is summarized by parameters associated with a reduced logistic regression model of the disease outcome on available covariates. We then setup estimating equations for parameters associated with the desired extended logistic regression model, based on information on the reduced model parameters from phase‐I and complete data available at phase‐II after accounting for nonrandom sampling design. We use generalized method of moments to solve overly identified estimating equations and develop the resulting asymptotic theory for the proposed estimator. Simulation studies show that the use of reduced parametric models, as opposed to summarizing data into strata, can lead to more efficient utilization of phase‐I data. An application of the proposed method is illustrated using the data from the U.S. National Wilms Tumor Study.

Suggested Citation

  • Prosenjit Kundu & Nilanjan Chatterjee, 2023. "Logistic regression analysis of two‐phase studies using generalized method of moments," Biometrics, The International Biometric Society, vol. 79(1), pages 241-252, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:241-252
    DOI: 10.1111/biom.13584
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13584
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Nilanjan Chatterjee & Yi-Hau Chen & Paige Maas & Raymond J. Carroll, 2016. "Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-Level Information From External Big Data Sources," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 107-117, March.
    3. Imbens, Guido W, 2002. "Generalized Method of Moments and Empirical Likelihood," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 493-506, October.
    4. N. E. Breslow & N. Chatterjee, 1999. "Design and analysis of two‐phase studies with binary outcome applied to Wilms tumour prognosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 457-468.
    5. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    6. Haibo Zhou & Rui Song & Yuanshan Wu & Jing Qin, 2011. "Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome," Biometrics, The International Biometric Society, vol. 67(1), pages 194-202, March.
    7. Jing Qin & Han Zhang & Pengfei Li & Demetrius Albanes & Kai Yu, 2015. "Using covariate-specific disease prevalence information to increase the power of case-control studies," Biometrika, Biometrika Trust, vol. 102(1), pages 169-180.
    8. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    9. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    10. Amatya, Anup & Demirtas, Hakan, 2015. "OrdNor: An R Package for Concurrent Generation of Correlated Ordinal and Normal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(c02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    2. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    3. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    4. Stefan Boes, 2007. "Count Data Models with Unobserved Heterogeneity: An Empirical Likelihood Approach," SOI - Working Papers 0704, Socioeconomic Institute - University of Zurich.
    5. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    6. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    7. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    8. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
    9. Fan, Yanqin & Gentry, Matthew & Li, Tong, 2011. "A new class of asymptotically efficient estimators for moment condition models," Journal of Econometrics, Elsevier, vol. 162(2), pages 268-277, June.
    10. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    11. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
    12. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    13. Stefan Boes, 2010. "Count Data Models with Correlated Unobserved Heterogeneity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 382-402, September.
    14. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    15. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    16. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    17. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    18. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    20. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:241-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.