IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v83y2022i3d10.1007_s10589-022-00404-9.html
   My bibliography  Save this article

Modeling design and control problems involving neural network surrogates

Author

Listed:
  • Dominic Yang

    (University of California at Los Angeles)

  • Prasanna Balaprakash

    (Argonne National Laboratory)

  • Sven Leyffer

    (Argonne National Laboratory)

Abstract

We consider nonlinear optimization problems that involve surrogate models represented by neural networks. We demonstrate first how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence, and then characterize stationarity of such models. We then present two alternative formulations of these problems in the specific case of feedforward neural networks with ReLU activation: as a mixed-integer optimization problem and as a mathematical program with complementarity constraints. For the latter formulation we prove that stationarity at a point for this problem corresponds to stationarity of the embedded formulation. Each of these formulations may be solved with state-of-the-art optimization methods, and we show how to obtain good initial feasible solutions for these methods. We compare our formulations on three practical applications arising in the design and control of combustion engines, in the generation of adversarial attacks on classifier networks, and in the determination of optimal flows in an oil well network.

Suggested Citation

  • Dominic Yang & Prasanna Balaprakash & Sven Leyffer, 2022. "Modeling design and control problems involving neural network surrogates," Computational Optimization and Applications, Springer, vol. 83(3), pages 759-800, December.
  • Handle: RePEc:spr:coopap:v:83:y:2022:i:3:d:10.1007_s10589-022-00404-9
    DOI: 10.1007/s10589-022-00404-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00404-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00404-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    2. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    3. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Scholtes, 2004. "Nonconvex Structures in Nonlinear Programming," Operations Research, INFORMS, vol. 52(3), pages 368-383, June.
    2. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    3. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    4. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    5. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," Econometric Institute Research Papers ERS-2003-085-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    8. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    9. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    10. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    11. Jianyuan Zhai & Fani Boukouvala, 2022. "Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 21-50, January.
    12. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    13. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    14. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    15. Aram V. Arutyunov & Alexey F. Izmailov, 2005. "Sensitivity Analysis for Cone-Constrained Optimization Problems Under the Relaxed Constraint Qualifications," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 333-353, May.
    16. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
    17. Ilker Birbil, S. & Gürkan, G. & Listes, O.L., 2004. "Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints : Sample-Path Analysis," Discussion Paper 2004-25, Tilburg University, Center for Economic Research.
    18. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    19. S. Dempe, 2012. "Comments on: Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 28-29, April.
    20. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:83:y:2022:i:3:d:10.1007_s10589-022-00404-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.