IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i2d10.1007_s10589-021-00330-2.html
   My bibliography  Save this article

A reduced proximal-point homotopy method for large-scale non-convex BQP

Author

Listed:
  • Xiubo Liang

    (Dalian University of Technology)

  • Guoqiang Wang

    (Business Research and Development department JD.com)

  • Bo Yu

    (Dalian University of Technology)

Abstract

In this paper, a reduced proximal-point homotopy (RPP-Hom) method is presented for large-scale non-convex box constrained quadratic programming (BQP) problems. As the outer iteration, at each step, the reduced proximal-point (RPP) algorithm applies the proximal point algorithm to a reduced BQP problem. The variables of the reduced subproblem include all free variables and variables at bound with respect to which the optimality conditions are violated. The RPP subproblem is solved by, as the inner iteration, an efficient piecewise linear homotopy path following method. A special termination criterion for the RPP algorithm is given and the global convergence as well as the locally linear convergence to a Karush-Kuhn-Tucker point is proved. Furthermore, a random perturbation procedure is given to modify RPP such that it converges to a local minimizer with probability 1. An accelerated version of RPP is also presented. Numerical experiments show that the RPP-Hom method outperforms the state-of-the-art algorithms for most of the benchmark problems, especially for training non-convex support vector machine.

Suggested Citation

  • Xiubo Liang & Guoqiang Wang & Bo Yu, 2022. "A reduced proximal-point homotopy method for large-scale non-convex BQP," Computational Optimization and Applications, Springer, vol. 81(2), pages 539-567, March.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00330-2
    DOI: 10.1007/s10589-021-00330-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00330-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00330-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yu., 2007. "Gradient methods for minimizing composite objective function," LIDAM Discussion Papers CORE 2007076, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Waltraud Huyer & Arnold Neumaier, 2018. "MINQ8: general definite and bound constrained indefinite quadratic programming," Computational Optimization and Applications, Springer, vol. 69(2), pages 351-381, March.
    3. Guoqiang Wang & Bo Yu, 2019. "PAL-Hom method for QP and an application to LP," Computational Optimization and Applications, Springer, vol. 73(1), pages 311-352, May.
    4. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Klaus Ritter & Manfred Meyer, 1967. "A method for solving nonlinear maximum‐problems depending on parameters," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(2), pages 147-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Wang & Bo Yu, 2019. "PAL-Hom method for QP and an application to LP," Computational Optimization and Applications, Springer, vol. 73(1), pages 311-352, May.
    2. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    3. Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.
    4. Majid Jahani & Naga Venkata C. Gudapati & Chenxin Ma & Rachael Tappenden & Martin Takáč, 2021. "Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences," Computational Optimization and Applications, Springer, vol. 79(2), pages 369-404, June.
    5. Qihang Lin & Xi Chen & Javier Peña, 2014. "A sparsity preserving stochastic gradient methods for sparse regression," Computational Optimization and Applications, Springer, vol. 58(2), pages 455-482, June.
    6. Renato D. C. Monteiro & Camilo Ortiz & Benar F. Svaiter, 2016. "An adaptive accelerated first-order method for convex optimization," Computational Optimization and Applications, Springer, vol. 64(1), pages 31-73, May.
    7. Bo Wen & Xiaoping Xue, 2019. "On the convergence of the iterates of proximal gradient algorithm with extrapolation for convex nonsmooth minimization problems," Journal of Global Optimization, Springer, vol. 75(3), pages 767-787, November.
    8. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    9. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    10. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    12. Mingqiang Li & Congying Han & Ruxin Wang & Tiande Guo, 2017. "Shrinking gradient descent algorithms for total variation regularized image denoising," Computational Optimization and Applications, Springer, vol. 68(3), pages 643-660, December.
    13. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    14. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    15. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    16. Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
    17. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    18. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
    20. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00330-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.