IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2007076.html
   My bibliography  Save this paper

Gradient methods for minimizing composite objective function

Author

Listed:
  • NESTEROV, Yu.

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

Abstract

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both in convex and nonconvex cases, can be solved with efficiency typical for the good part of the objective. For convex problems of the above structure, we consider primal and dual variants of the gradient method (converge as O (1/k)), and an accelerated multistep version with convergence rate O (1/k2), where k isthe iteration counter. For all methods, we suggest some efficient "line search" procedures and show that the additional computational work necessary for estimating the unknown problem class parameters can only multiply the complexity of each iteration by a small constant factor. We present also the results of preliminary computational experiments, which confirm the superiority of the accelerated scheme.

Suggested Citation

  • NESTEROV, Yu., 2007. "Gradient methods for minimizing composite objective function," LIDAM Discussion Papers CORE 2007076, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2007076
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2007.html
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2007076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.