IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v80y2021i1d10.1007_s10589-021-00293-4.html
   My bibliography  Save this article

Alternating conditional gradient method for convex feasibility problems

Author

Listed:
  • R. Díaz Millán

    (Deakin University)

  • O. P. Ferreira

    (Universidade Federal de Goiás)

  • L. F. Prudente

    (Universidade Federal de Goiás)

Abstract

The classical convex feasibility problem in a finite dimensional Euclidean space consists of finding a point in the intersection of two convex sets. In the present paper we are interested in two particular instances of this problem. First, we assume to know how to compute an exact projection onto one of the sets involved and the other set is compact such that the conditional gradient (CondG) method can be used for computing efficiently an inexact projection on it. Second, we assume that both sets involved are compact such that the CondG method can be used for computing efficiently inexact projections on them. We combine alternating projection method with CondG method to design a new method, which can be seen as an inexact feasible version of alternate projection method. The proposed method generates two different sequences belonging to each involved set, which converge to a point in the intersection of them whenever it is not empty. If the intersection is empty, then the sequences converge to points in the respective sets whose distance between them is equal to the distance between the sets in consideration. Numerical experiments are provided to illustrate the practical behavior of the method.

Suggested Citation

  • R. Díaz Millán & O. P. Ferreira & L. F. Prudente, 2021. "Alternating conditional gradient method for convex feasibility problems," Computational Optimization and Applications, Springer, vol. 80(1), pages 245-269, September.
  • Handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00293-4
    DOI: 10.1007/s10589-021-00293-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00293-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00293-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    2. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    3. Amir Beck & Marc Teboulle, 2004. "A conditional gradient method with linear rate of convergence for solving convex linear systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(2), pages 235-247, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Díaz Millán & O. P. Ferreira & J. Ugon, 2023. "Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems," Journal of Global Optimization, Springer, vol. 86(3), pages 621-636, July.
    2. R. Díaz Millán & O. P. Ferreira & J. Ugon, 2024. "Extragradient method with feasible inexact projection to variational inequality problem," Computational Optimization and Applications, Springer, vol. 89(2), pages 459-484, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    2. Deyi Liu & Volkan Cevher & Quoc Tran-Dinh, 2022. "A Newton Frank–Wolfe method for constrained self-concordant minimization," Journal of Global Optimization, Springer, vol. 83(2), pages 273-299, June.
    3. R. Díaz Millán & O. P. Ferreira & J. Ugon, 2023. "Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems," Journal of Global Optimization, Springer, vol. 86(3), pages 621-636, July.
    4. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    5. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    6. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    8. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    9. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    10. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    11. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    12. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    13. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.
    14. A. de Palma & Y. Nesterov, 2001. "Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives," THEMA Working Papers 2001-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    15. D. J. White, 1993. "A parametric‐based heuristic program for the quadratic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 553-568, June.
    16. Annamaria Barbagallo & Serena Guarino Lo Bianco, 2023. "A random time-dependent noncooperative equilibrium problem," Computational Optimization and Applications, Springer, vol. 84(1), pages 27-52, January.
    17. Kang, Seong-Cheol & Lee, Hoyoung, 2019. "Economic appraisal of implementing electric vehicle taxis in Seoul," Research in Transportation Economics, Elsevier, vol. 73(C), pages 45-52.
    18. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    19. Yong Xia & Zi Xu, 2010. "An efficient Lagrangian smoothing heuristic for Max-Cut," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(5), pages 683-700, October.
    20. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00293-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.