Inexact restoration with subsampled trust-region methods for finite-sum minimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-020-00196-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bastin, Fabian & Cirillo, Cinzia & Toint, Philippe L., 2006. "Application of an adaptive Monte Carlo algorithm to mixed logit estimation," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 577-593, August.
- Fabian Bastin & Cinzia Cirillo & Philippe Toint, 2006. "An adaptive Monte Carlo algorithm for computing mixed logit estimators," Computational Management Science, Springer, vol. 3(1), pages 55-79, January.
- Raghu Pasupathy, 2010. "On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization," Operations Research, INFORMS, vol. 58(4-part-1), pages 889-901, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stefania Bellavia & Nataša Krejić & Benedetta Morini & Simone Rebegoldi, 2023. "A stochastic first-order trust-region method with inexact restoration for finite-sum minimization," Computational Optimization and Applications, Springer, vol. 84(1), pages 53-84, January.
- Ernesto G. Birgin, 2020. "Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 615-619, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
- Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
- Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
- Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
- Johannes O. Royset & Roberto Szechtman, 2013. "Optimal Budget Allocation for Sample Average Approximation," Operations Research, INFORMS, vol. 61(3), pages 762-776, June.
- Hu, Shaolong & Dong, Zhijie Sasha & Dai, Rui, 2024. "A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
- Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
- Akar, Gulsah & Clifton, Kelly J. & Doherty, Sean T., 2012. "Redefining activity types: Who participates in which leisure activity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1194-1204.
- Piergiacomo Sabino, 2011. "Implementing quasi-Monte Carlo simulations with linear transformations," Computational Management Science, Springer, vol. 8(1), pages 51-74, April.
- J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
- Jeffrey Larson & Stephen C. Billups, 2016. "Stochastic derivative-free optimization using a trust region framework," Computational Optimization and Applications, Springer, vol. 64(3), pages 619-645, July.
- Wang, Xinchang, 2016. "Optimal allocation of limited and random network resources to discrete stochastic demands for standardized cargo transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 310-331.
- Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.
- Johannes O. Royset & Roger J-B Wets, 2016. "Optimality Functions and Lopsided Convergence," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 965-983, June.
- Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
- Honggang Wang, 2017. "Subspace dynamic‐simplex linear interpolation search for mixed‐integer black‐box optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 305-322, June.
- Kyle Cooper & Susan R. Hunter & Kalyani Nagaraj, 2020. "Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1080-1100, October.
- Tsai, Shing Chih & Zheng, Ya-Xin, 2013. "A simulation optimization approach for a two-echelon inventory system with service level constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 364-374.
- Hu, Shaolong & Hu, Qingmi & Tao, Sha & Dong, Zhijie Sasha, 2023. "A multi-stage stochastic programming approach for pre-positioning of relief supplies considering returns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- Bismark Singh & David P. Morton & Surya Santoso, 2018. "An adaptive model with joint chance constraints for a hybrid wind-conventional generator system," Computational Management Science, Springer, vol. 15(3), pages 563-582, October.
More about this item
Keywords
Inexact restoration; Trust-region methods; Subsampling; Local and global convergence; Worst-case evaluation complexity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00196-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.