IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v74y2019i2d10.1007_s10589-019-00113-w.html
   My bibliography  Save this article

A novel convex dual approach to three-dimensional assignment problem: theoretical analysis

Author

Listed:
  • Jingqun Li

    (McMaster University)

  • R. Tharmarasa

    (McMaster University)

  • Daly Brown

    (General Dynamics Missions Systems-Canada)

  • Thia Kirubarajan

    (McMaster University)

  • Krishna R. Pattipati

    (University of Connecticut)

Abstract

In this paper, we propose a novel convex dual approach to the three dimensional assignment problem, which is an NP-hard binary programming problem. It is shown that the proposed dual approach is equivalent to the Lagrangian relaxation method in terms of the best value attainable by the two approaches. However, the pure dual representation is not only more elegant, but also makes the theoretical analysis of the algorithm more tractable. In fact, we obtain a sufficient and necessary condition for the duality gap to be zero, or equivalently, for the Lagrangian relaxation approach to find the optimal solution to the assignment problem with a guarantee. Also, we establish a mild and easy-to-check condition, under which the dual problem is equivalent to the original one. In general cases, the optimal value of the dual problem can provide a satisfactory lower bound on the optimal value of the original assignment problem. Furthermore, the newly proposed approach can be extended to higher dimensional cases and general assignment problems.

Suggested Citation

  • Jingqun Li & R. Tharmarasa & Daly Brown & Thia Kirubarajan & Krishna R. Pattipati, 2019. "A novel convex dual approach to three-dimensional assignment problem: theoretical analysis," Computational Optimization and Applications, Springer, vol. 74(2), pages 481-516, November.
  • Handle: RePEc:spr:coopap:v:74:y:2019:i:2:d:10.1007_s10589-019-00113-w
    DOI: 10.1007/s10589-019-00113-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00113-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00113-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    2. Chrysafis Vogiatzis & Eduardo Pasiliao & Panos Pardalos, 2014. "Graph partitions for the multidimensional assignment problem," Computational Optimization and Applications, Springer, vol. 58(1), pages 205-224, May.
    3. M. L. Balinski, 1985. "Signature Methods for the Assignment Problem," Operations Research, INFORMS, vol. 33(3), pages 527-536, June.
    4. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    5. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    6. Duan Li & Douglas White, 2000. "pth Power Lagrangian Method for Integer Programming," Annals of Operations Research, Springer, vol. 98(1), pages 151-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boštjan Gabrovšek & Tina Novak & Janez Povh & Darja Rupnik Poklukar & Janez Žerovnik, 2020. "Multiple Hungarian Method for k -Assignment Problem," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    2. Jingqun Li & Thia Kirubarajan & R. Tharmarasa & Daly Brown & Krishna R. Pattipati, 2021. "A dual approach to multi-dimensional assignment problems," Journal of Global Optimization, Springer, vol. 81(3), pages 691-716, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingqun Li & Thia Kirubarajan & R. Tharmarasa & Daly Brown & Krishna R. Pattipati, 2021. "A dual approach to multi-dimensional assignment problems," Journal of Global Optimization, Springer, vol. 81(3), pages 691-716, November.
    2. Boštjan Gabrovšek & Tina Novak & Janez Povh & Darja Rupnik Poklukar & Janez Žerovnik, 2020. "Multiple Hungarian Method for k -Assignment Problem," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    3. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    4. Pritibhushan Sinha, 2009. "Assignment problems with changeover cost," Annals of Operations Research, Springer, vol. 172(1), pages 447-457, November.
    5. Talmor, Irit, 2022. "Solving the problem of maximizing diversity in public sector teams," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    6. Morrill, Thayer & Roth, Alvin E., 2024. "Top trading cycles," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    7. Christian Billing & Florian Jaehn & Thomas Wensing, 2020. "Fair task allocation problem," Annals of Operations Research, Springer, vol. 284(1), pages 131-146, January.
    8. Guojun Hu & Junran Lichen & Pengxiang Pan, 2023. "Two Combinatorial Algorithms for the Constrained Assignment Problem with Bounds and Penalties," Mathematics, MDPI, vol. 11(24), pages 1-12, December.
    9. Manfred Padberg & Dimitris Alevras, 1994. "Order‐preserving assignments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 395-421, April.
    10. Ivan Belik & Kurt Jornsten, 2018. "Critical objective function values in linear sum assignment problems," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 842-852, April.
    11. Prabhjot Kaur & Kalpana Dahiya & Vanita Verma, 2021. "Time-cost trade-off analysis of a priority based assignment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 448-482, June.
    12. Sana Bouajaja & Najoua Dridi, 2017. "A survey on human resource allocation problem and its applications," Operational Research, Springer, vol. 17(2), pages 339-369, July.
    13. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    14. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    15. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    16. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    17. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    18. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    19. Ágoston, Kolos Csaba & Biró, Péter & Kováts, Endre & Jankó, Zsuzsanna, 2022. "College admissions with ties and common quotas: Integer programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 722-734.
    20. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:74:y:2019:i:2:d:10.1007_s10589-019-00113-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.