Reconstruction of 3D X-ray CT images from reduced sampling by a scaled gradient projection algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-017-9961-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Roberta De Asmundis & Daniela di Serafino & William Hager & Gerardo Toraldo & Hongchao Zhang, 2014. "An efficient gradient method using the Yuan steplength," Computational Optimization and Applications, Springer, vol. 59(3), pages 541-563, December.
- di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
- Clóvis Gonzaga & Ruana Schneider, 2016. "On the steepest descent algorithm for quadratic functions," Computational Optimization and Applications, Springer, vol. 63(2), pages 523-542, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yakui Huang & Yu-Hong Dai & Xin-Wei Liu & Hongchao Zhang, 2022. "On the acceleration of the Barzilai–Borwein method," Computational Optimization and Applications, Springer, vol. 81(3), pages 717-740, April.
- Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
- Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.
- Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
- Bonettini, Silvia & Prato, Marco & Rebegoldi, Simone, 2016. "A cyclic block coordinate descent method with generalized gradient projections," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 288-300.
- Serena Crisci & Federica Porta & Valeria Ruggiero & Luca Zanni, 2023. "Hybrid limited memory gradient projection methods for box-constrained optimization problems," Computational Optimization and Applications, Springer, vol. 84(1), pages 151-189, January.
- Corsaro, Stefania & De Simone, Valentina & Marino, Zelda, 2021. "Split Bregman iteration for multi-period mean variance portfolio optimization," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
- Masoud Fatemi, 2022. "On initial point selection of the steepest descent algorithm for general quadratic functions," Computational Optimization and Applications, Springer, vol. 82(2), pages 329-360, June.
- Harry Fernando Oviedo Leon, 2019. "A delayed weighted gradient method for strictly convex quadratic minimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 729-746, December.
- Behzad Azmi & Karl Kunisch, 2020. "Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 819-844, June.
- Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
- Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
- A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
- Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
- Yutao Zheng & Bing Zheng, 2017. "A New Modified Barzilai–Borwein Gradient Method for the Quadratic Minimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 179-186, January.
- Zhaosong Lu & Xiaojun Chen, 2018. "Generalized Conjugate Gradient Methods for ℓ 1 Regularized Convex Quadratic Programming with Finite Convergence," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 275-303, February.
- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
More about this item
Keywords
3D Computed tomography; Image reconstruction; Total variation regularization; Nonnegatively constrained minimization; Scaled gradient projection methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:1:d:10.1007_s10589-017-9961-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.