IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v70y2018i2d10.1007_s10589-018-0006-2.html
   My bibliography  Save this article

Chance-constrained economic dispatch with renewable energy and storage

Author

Listed:
  • Jianqiang Cheng

    (University of Arizona)

  • Richard Li-Yang Chen

    (Sandia National Laboratories)

  • Habib N. Najm

    (Sandia National Laboratories)

  • Ali Pinar

    (Sandia National Laboratories)

  • Cosmin Safta

    (Sandia National Laboratories)

  • Jean-Paul Watson

    (Sandia National Laboratories)

Abstract

Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.

Suggested Citation

  • Jianqiang Cheng & Richard Li-Yang Chen & Habib N. Najm & Ali Pinar & Cosmin Safta & Jean-Paul Watson, 2018. "Chance-constrained economic dispatch with renewable energy and storage," Computational Optimization and Applications, Springer, vol. 70(2), pages 479-502, June.
  • Handle: RePEc:spr:coopap:v:70:y:2018:i:2:d:10.1007_s10589-018-0006-2
    DOI: 10.1007/s10589-018-0006-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0006-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0006-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    4. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    2. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2022. "Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem," Energies, MDPI, vol. 15(13), pages 1-26, June.
    3. Roya Karimi & Jianqiang Cheng & Miguel A. Lejeune, 2021. "A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1015-1036, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    2. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    3. Fontem, Belleh & Smith, Jeremiah, 2019. "Analysis of a chance-constrained new product risk model with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 272(3), pages 999-1016.
    4. Zheng Zhang & Brian T. Denton & Xiaolan Xie, 2020. "Branch and Price for Chance-Constrained Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 547-564, July.
    5. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    6. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    7. Bowen Li & Ruiwei Jiang & Johanna L. Mathieu, 2022. "Integrating unimodality into distributionally robust optimal power flow," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 594-617, October.
    8. Yan Deng & Huiwen Jia & Shabbir Ahmed & Jon Lee & Siqian Shen, 2021. "Scenario Grouping and Decomposition Algorithms for Chance-Constrained Programs," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 757-773, May.
    9. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    10. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    11. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    12. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    13. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    14. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    15. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    17. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    18. Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "Stochastic Operating Room Scheduling for High-Volume Specialties Under Block Booking," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 682-692, November.
    19. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.
    20. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:70:y:2018:i:2:d:10.1007_s10589-018-0006-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.