IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i3d10.1007_s10589-017-9969-7.html
   My bibliography  Save this article

Euler discretization for a class of nonlinear optimal control problems with control appearing linearly

Author

Listed:
  • Walter Alt

    (Friedrich-Schiller-Universität Jena)

  • Ursula Felgenhauer

    (Brandenburgische Technische Universität Cottbus-Senftenberg)

  • Martin Seydenschwanz

    (Siemens AG, Research in Digitalization and Automation)

Abstract

We investigate Euler discretization for a class of optimal control problems with a nonlinear cost functional of Mayer type, a nonlinear system equation with control appearing linearly and constraints defined by lower and upper bounds for the controls. Under the assumption that the cost functional satisfies a growth condition we prove for the discrete solutions Hölder type error estimates w.r.t. the mesh size of the discretization. If a stronger second-order optimality condition is satisfied the order of convergence can be improved. Numerical experiments confirm the theoretical findings.

Suggested Citation

  • Walter Alt & Ursula Felgenhauer & Martin Seydenschwanz, 2018. "Euler discretization for a class of nonlinear optimal control problems with control appearing linearly," Computational Optimization and Applications, Springer, vol. 69(3), pages 825-856, April.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:3:d:10.1007_s10589-017-9969-7
    DOI: 10.1007/s10589-017-9969-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9969-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9969-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ursula Felgenhauer, 2016. "Discretization of semilinear bang-singular-bang control problems," Computational Optimization and Applications, Springer, vol. 64(1), pages 295-326, May.
    2. Stephen M. Robinson, 1976. "Regularity and Stability for Convex Multivalued Functions," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 130-143, May.
    3. Vili Dhamo & Fredi Tröltzsch, 2011. "Some aspects of reachability for parabolic boundary control problems with control constraints," Computational Optimization and Applications, Springer, vol. 50(1), pages 75-110, September.
    4. Klaus Deckelnick & Michael Hinze, 2012. "A note on the approximation of elliptic control problems with bang-bang controls," Computational Optimization and Applications, Springer, vol. 51(2), pages 931-939, March.
    5. Martin Seydenschwanz, 2015. "Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 61(3), pages 731-760, July.
    6. Alt, Walter & Schneider, Christopher & Seydenschwanz, Martin, 2016. "Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions," Applied Mathematics and Computation, Elsevier, vol. 287, pages 104-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Sánchez Licea, 2021. "Weak Measurable Optimal Controls for the Problems of Bolza," Mathematics, MDPI, vol. 9(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Scarinci & V. M. Veliov, 2018. "Higher-order numerical scheme for linear quadratic problems with bang–bang controls," Computational Optimization and Applications, Springer, vol. 69(2), pages 403-422, March.
    2. Alt, Walter & Schneider, Christopher & Seydenschwanz, Martin, 2016. "Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions," Applied Mathematics and Computation, Elsevier, vol. 287, pages 104-124.
    3. Nikolaus Daniels, 2018. "Tikhonov regularization of control-constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 70(1), pages 295-320, May.
    4. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    5. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    6. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    7. Walter Alt & C. Yalçın Kaya & Christopher Schneider, 2016. "Dualization and discretization of linear-quadratic control problems with bang–bang solutions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 47-77, February.
    8. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    9. Chen, Xin & Yuan, Yue & Yuan, Dongmei & Ge, Xiao, 2024. "Optimal control for both forward and backward discrete-time systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 298-314.
    10. A. S. Lewis, 2004. "The Structured Distance to Ill-Posedness for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 776-785, November.
    11. Kung Fu Ng & Xi Yin Zheng, 2004. "Characterizations of Error Bounds for Convex Multifunctions on Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 45-63, February.
    12. C. Zălinescu, 2003. "A Nonlinear Extension of Hoffman's Error Bounds for Linear Inequalities," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 524-532, August.
    13. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    14. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    15. Daniel Wachsmuth, 2015. "Robust error estimates for regularization and discretization of bang–bang control problems," Computational Optimization and Applications, Springer, vol. 62(1), pages 271-289, September.
    16. G. Kassay & J. Kolumban, 2000. "Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 35-50, October.
    17. Gürkan, G. & Ozge, A.Y., 1996. "Sample-Path Optimization of Buffer Allocations in a Tandem Queue - Part I : Theoretical Issues," Other publications TiSEM 77da022b-635b-46fd-bf4a-f, Tilburg University, School of Economics and Management.
    18. Hui Huang & Jiangxing Zhu, 2023. "Quasi-Error Bounds for p-Convex Set-Valued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 805-829, August.
    19. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2022. "Higher-order set-valued Hadamard directional derivatives: calculus rules and sensitivity analysis of equilibrium problems and generalized equations," Journal of Global Optimization, Springer, vol. 83(2), pages 377-402, June.
    20. Hugo Leiva & Nelson Merentes & Kazimierz Nikodem & José Sánchez, 2013. "Strongly convex set-valued maps," Journal of Global Optimization, Springer, vol. 57(3), pages 695-705, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:3:d:10.1007_s10589-017-9969-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.