IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i3p731-760.html
   My bibliography  Save this article

Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions

Author

Listed:
  • Martin Seydenschwanz

Abstract

We analyze a combined regularization–discretization approach for a class of linear-quadratic optimal control problems. By choosing the regularization parameter $$\alpha $$ α with respect to the mesh size $$h$$ h of the discretization we approximate the optimal bang–bang control. Under weaker assumptions on the structure of the switching function we generalize existing convergence results and prove error estimates of order $${\mathcal {O}}(h^{1/(k+1)})$$ O ( h 1 / ( k + 1 ) ) with respect to the controllability index $$k$$ k . Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Martin Seydenschwanz, 2015. "Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 61(3), pages 731-760, July.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:731-760
    DOI: 10.1007/s10589-015-9730-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9730-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9730-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Alt & Nils Bräutigam, 2009. "Finite-difference discretizations of quadratic control problems governed by ordinary elliptic differential equations," Computational Optimization and Applications, Springer, vol. 43(1), pages 133-150, May.
    2. M. Hinze & C. Meyer, 2010. "Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems," Computational Optimization and Applications, Springer, vol. 46(3), pages 487-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Scarinci & V. M. Veliov, 2018. "Higher-order numerical scheme for linear quadratic problems with bang–bang controls," Computational Optimization and Applications, Springer, vol. 69(2), pages 403-422, March.
    2. Walter Alt & Ursula Felgenhauer & Martin Seydenschwanz, 2018. "Euler discretization for a class of nonlinear optimal control problems with control appearing linearly," Computational Optimization and Applications, Springer, vol. 69(3), pages 825-856, April.
    3. Nikolaus Daniels, 2018. "Tikhonov regularization of control-constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 70(1), pages 295-320, May.
    4. Alt, Walter & Schneider, Christopher & Seydenschwanz, Martin, 2016. "Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions," Applied Mathematics and Computation, Elsevier, vol. 287, pages 104-124.
    5. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    6. Dang Hieu & Pham Kim Quy, 2023. "One-Step iterative method for bilevel equilibrium problem in Hilbert space," Journal of Global Optimization, Springer, vol. 85(2), pages 487-510, February.
    7. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    8. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    9. Walter Alt & C. Yalçın Kaya & Christopher Schneider, 2016. "Dualization and discretization of linear-quadratic control problems with bang–bang solutions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 47-77, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Rösch & K. G. Siebert & S. Steinig, 2017. "Reliable a posteriori error estimation for state-constrained optimal control," Computational Optimization and Applications, Springer, vol. 68(1), pages 121-162, September.
    2. Veronika Karl & Daniel Wachsmuth, 2018. "An augmented Lagrange method for elliptic state constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 69(3), pages 857-880, April.
    3. Hamdullah Yücel & Peter Benner, 2015. "Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations," Computational Optimization and Applications, Springer, vol. 62(1), pages 291-321, September.
    4. Wang, Fangyuan & Chen, Chuanjun & Zhou, Zhaojie, 2024. "Integral constraint regularization method for fractional optimal control problem with pointwise state constraint," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. B. Jadamba & A. Khan & M. Sama, 2017. "Error estimates for integral constraint regularization of state-constrained elliptic control problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 39-71, May.
    6. Bui Trong Kien & Arnd Rösch & Nguyen Hai Son & Nguyen Van Tuyen, 2023. "FEM for Semilinear Elliptic Optimal Control with Nonlinear and Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 130-173, April.
    7. Veronika Karl & Ira Neitzel & Daniel Wachsmuth, 2020. "A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 77(3), pages 831-869, December.
    8. Klaus Krumbiegel & Ira Neitzel & Arnd Rösch, 2012. "Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints," Computational Optimization and Applications, Springer, vol. 52(1), pages 181-207, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:731-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.