IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i1p35-57.html
   My bibliography  Save this article

On the use of iterative methods in cubic regularization for unconstrained optimization

Author

Listed:
  • Tommaso Bianconcini
  • Giampaolo Liuzzi
  • Benedetta Morini
  • Marco Sciandrone

Abstract

In this paper we consider the problem of minimizing a smooth function by using the adaptive cubic regularized (ARC) framework. We focus on the computation of the trial step as a suitable approximate minimizer of the cubic model and discuss the use of matrix-free iterative methods. Our approach is alternative to the implementation proposed in the original version of ARC, involving a linear algebra phase, but preserves the same worst-case complexity count. Further we introduce a new stopping criterion in order to properly manage the “over-solving” issue arising whenever the cubic model is not an adequate model of the true objective function. Numerical experiments conducted by using a nonmonotone gradient method as inexact solver are presented. The obtained results clearly show the effectiveness of the new variant of ARC algorithm. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Tommaso Bianconcini & Giampaolo Liuzzi & Benedetta Morini & Marco Sciandrone, 2015. "On the use of iterative methods in cubic regularization for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 35-57, January.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:35-57
    DOI: 10.1007/s10589-014-9672-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9672-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9672-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2007. "Gauss-Newton scheme with worst case guarantees for global performance," LIDAM Reprints CORE 1952, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. N. Gould & M. Porcelli & P. Toint, 2012. "Updating the regularization parameter in the adaptive cubic regularization algorithm," Computational Optimization and Applications, Springer, vol. 53(1), pages 1-22, September.
    3. Hande Benson & David Shanno, 2014. "Interior-point methods for nonconvex nonlinear programming: cubic regularization," Computational Optimization and Applications, Springer, vol. 58(2), pages 323-346, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    2. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    3. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    2. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    3. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    4. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    5. Mahesh Chandra Mukkamala & Jalal Fadili & Peter Ochs, 2022. "Global convergence of model function based Bregman proximal minimization algorithms," Journal of Global Optimization, Springer, vol. 83(4), pages 753-781, August.
    6. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    7. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    8. Kenji Ueda & Nobuo Yamashita, 2010. "On a Global Complexity Bound of the Levenberg-Marquardt Method," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 443-453, December.
    9. Elizabeth Karas & Sandra Santos & Benar Svaiter, 2015. "Algebraic rules for quadratic regularization of Newton’s method," Computational Optimization and Applications, Springer, vol. 60(2), pages 343-376, March.
    10. Boris Polyak & Andrey Tremba, 2020. "Sparse solutions of optimal control via Newton method for under-determined systems," Journal of Global Optimization, Springer, vol. 76(3), pages 613-623, March.
    11. Hande Benson & David Shanno, 2014. "Interior-point methods for nonconvex nonlinear programming: cubic regularization," Computational Optimization and Applications, Springer, vol. 58(2), pages 323-346, June.
    12. Nikita Doikov & Yurii Nesterov, 2021. "Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 317-339, April.
    13. Paul Armand & Isaï Lankoandé, 2017. "An inexact proximal regularization method for unconstrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 43-59, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:35-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.