IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i3d10.1007_s10589-019-00117-6.html
   My bibliography  Save this article

A penalty-free method with superlinear convergence for equality constrained optimization

Author

Listed:
  • Zhongwen Chen

    (Soochow University)

  • Yu-Hong Dai

    (Chinese Academy of Sciences)

  • Jiangyan Liu

    (Soochow University)

Abstract

In this paper, we propose a new penalty-free method for solving nonlinear equality constrained optimization. This method uses different trust regions to cope with the nonlinearity of the objective function and the constraints instead of using a penalty function or a filter. To avoid Maratos effect, we do not make use of the second order correction or the nonmonotone technique, but utilize the value of the Lagrangian function instead of the objective function in the acceptance criterion of the trial step. The feasibility restoration phase is not necessary, which is often used in filter methods or some other penalty-free methods. Global and superlinear convergence are established for the method under standard assumptions. Preliminary numerical results are reported, which demonstrate the usefulness of the proposed method.

Suggested Citation

  • Zhongwen Chen & Yu-Hong Dai & Jiangyan Liu, 2020. "A penalty-free method with superlinear convergence for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 801-833, July.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00117-6
    DOI: 10.1007/s10589-019-00117-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00117-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00117-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chungen Shen & Sven Leyffer & Roger Fletcher, 2012. "A nonmonotone filter method for nonlinear optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 583-607, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto G. Birgin, 2020. "Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 615-619, July.
    2. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    2. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    3. Pei, Yonggang & Zhu, Detong, 2016. "Local convergence of a trust-region algorithm with line search filter technique for nonlinear constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 797-808.
    4. Chungen Shen & Lei-Hong Zhang & Bo Wang & Wenqiong Shao, 2014. "Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 435-473, December.
    5. E. Birgin & J. Martínez & L. Prudente, 2015. "Optimality properties of an Augmented Lagrangian method on infeasible problems," Computational Optimization and Applications, Springer, vol. 60(3), pages 609-631, April.
    6. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    7. Sven Leyffer & Charlie Vanaret, 2020. "An augmented Lagrangian filter method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 343-376, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00117-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.