An efficient augmented Lagrangian method with applications to total variation minimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-013-9576-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paula A. Kikuchi & Aurelio R. L. Oliveira, 2020. "New Preconditioners Applied to Linear Programming and the Compressive Sensing Problems," SN Operations Research Forum, Springer, vol. 1(4), pages 1-20, December.
- Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Liu, Xiao-Kang, 2022. "A new energy storage sharing framework with regard to both storage capacity and power capacity," Applied Energy, Elsevier, vol. 307(C).
- Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
- Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
- Zhen Wei & Qiurong Yan & Xiaoqiang Lu & Yongjian Zheng & Shida Sun & Jian Lin, 2023. "Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
- Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
- Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
- Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
- Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
- Donghwan Kim & Jeffrey A. Fessler, 2021. "Optimizing the Efficiency of First-Order Methods for Decreasing the Gradient of Smooth Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 192-219, January.
- Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
- Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013.
"Pivotal estimation via square-root lasso in nonparametric regression,"
CeMMAP working papers
CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
- Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021.
"Factorisable Multitask Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2016. "Factorisable multi-task quantile regression," SFB 649 Discussion Papers 2016-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2020. "Factorisable Multitask Quantile Regression," IRTG 1792 Discussion Papers 2020-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
- David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
- Yunmei Chen & Xiaojing Ye & Wei Zhang, 2020. "Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 411-432, November.
- Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.
- Wenjie Huang & Xun Zhang, 2021. "Randomized Smoothing Variance Reduction Method for Large-Scale Non-smooth Convex Optimization," SN Operations Research Forum, Springer, vol. 2(2), pages 1-28, June.
- Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
More about this item
Keywords
Compressive sensing; Non-smooth optimization; Augmented Lagrangian method; Nonmonotone line search; Barzilai-Borwein method; Single-pixel camera;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:56:y:2013:i:3:p:507-530. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.