IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v1y2020i4d10.1007_s43069-020-00029-w.html
   My bibliography  Save this article

New Preconditioners Applied to Linear Programming and the Compressive Sensing Problems

Author

Listed:
  • Paula A. Kikuchi

    (State University of Mato Grosso do Sul)

  • Aurelio R. L. Oliveira

    (University of Campinas)

Abstract

In this paper, we present new preconditioners based on the incomplete Cholesky factorization and on the splitting preconditioner. In the first approach, we consider the interior point methods that are very efficient for solving linear programming problems. The results of the numerical tests for this problem present satisfactory results in relation to the time and number of iterations. In the second approach, we apply a new preconditioner in compressive sensing (CS) problems, which is an efficient technique to acquire and reconstruct signal. An approach for solving this problem is the primal-dual Newton conjugate gradients. We present a new preconditioner, in the construction of which we exploited the fact that close to a solution we can split the variables into two groups and the matrices satisfy certain properties, as demonstrated in a method known from the literature (Fountoulakis 2015). Once the preconditioner exploiting these features has been computed, we apply an incomplete Cholesky factorization on it, and use the factor found as the true preconditioner. Therefore, the new preconditioner is the result of the combination of two preconditioners. The results obtained are satisfactory in relation to the time and the quality of the reconstructed image.

Suggested Citation

  • Paula A. Kikuchi & Aurelio R. L. Oliveira, 2020. "New Preconditioners Applied to Linear Programming and the Compressive Sensing Problems," SN Operations Research Forum, Springer, vol. 1(4), pages 1-20, December.
  • Handle: RePEc:spr:snopef:v:1:y:2020:i:4:d:10.1007_s43069-020-00029-w
    DOI: 10.1007/s43069-020-00029-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-020-00029-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-020-00029-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chengbo Li & Wotao Yin & Hong Jiang & Yin Zhang, 2013. "An efficient augmented Lagrangian method with applications to total variation minimization," Computational Optimization and Applications, Springer, vol. 56(3), pages 507-530, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    2. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    4. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
    5. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Liu, Xiao-Kang, 2022. "A new energy storage sharing framework with regard to both storage capacity and power capacity," Applied Energy, Elsevier, vol. 307(C).
    6. Zhen Wei & Qiurong Yan & Xiaoqiang Lu & Yongjian Zheng & Shida Sun & Jian Lin, 2023. "Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module," Mathematics, MDPI, vol. 11(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:1:y:2020:i:4:d:10.1007_s43069-020-00029-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.