IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v48y2011i3p453-485.html
   My bibliography  Save this article

Corrector-predictor methods for sufficient linear complementarity problems

Author

Listed:
  • Filiz Gurtuna
  • Cosmin Petra
  • Florian Potra
  • Olena Shevchenko
  • Adrian Vancea

Abstract

No abstract is available for this item.

Suggested Citation

  • Filiz Gurtuna & Cosmin Petra & Florian Potra & Olena Shevchenko & Adrian Vancea, 2011. "Corrector-predictor methods for sufficient linear complementarity problems," Computational Optimization and Applications, Springer, vol. 48(3), pages 453-485, April.
  • Handle: RePEc:spr:coopap:v:48:y:2011:i:3:p:453-485
    DOI: 10.1007/s10589-009-9263-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-009-9263-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-009-9263-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shinji Mizuno & Michael J. Todd & Yinyu Ye, 1993. "On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 964-981, November.
    2. Sanjay Mehrotra, 1993. "Quadratic Convergence in a Primal-Dual Method," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 741-751, August.
    3. J. Frédéric Bonnans & Florian A. Potra, 1997. "On the Convergence of the Iteration Sequence of Infeasible Path Following Algorithms for Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 378-407, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrouz Kheirfam, 2014. "A New Complexity Analysis for Full-Newton Step Infeasible Interior-Point Algorithm for Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 853-869, June.
    2. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    3. Florian A. Potra, 2016. "Sufficient weighted complementarity problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 467-488, June.
    4. G. Wang & C. Yu & K. Teo, 2014. "A full-Newton step feasible interior-point algorithm for $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems," Journal of Global Optimization, Springer, vol. 59(1), pages 81-99, May.
    5. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    6. Marianna E.-Nagy & Anita Varga, 2024. "A New Ai–Zhang Type Interior Point Algorithm for Sufficient Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 76-107, July.
    7. Marianna E.-Nagy & Tibor Illés & Janez Povh & Anita Varga & Janez Žerovnik, 2024. "Sufficient Matrices: Properties, Generating and Testing," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 204-236, July.
    8. H. Mansouri & M. Pirhaji, 2013. "A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 451-461, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holder, A.G. & Sturm, J.F. & Zhang, S., 1998. "Analytic central path, sensitivity analysis and parametric linear programming," Econometric Institute Research Papers EI 9801, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. M. Salahi & T. Terlaky, 2007. "Adaptive Large-Neighborhood Self-Regular Predictor-Corrector Interior-Point Methods for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 143-160, January.
    3. C. K. Sim, 2009. "On the Analyticity of Underlying HKM Paths for Monotone Semidefinite Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 193-215, April.
    4. Yinyu Ye, 2005. "A New Complexity Result on Solving the Markov Decision Problem," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 733-749, August.
    5. Y. B. Zhao & J. Y. Han, 1999. "Two Interior-Point Methods for Nonlinear P *(τ)-Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 659-679, September.
    6. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    7. M. Sayadi Shahraki & H. Mansouri & M. Zangiabadi, 2016. "A New Primal–Dual Predictor–Corrector Interior-Point Method for Linear Programming Based on a Wide Neighbourhood," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 546-561, August.
    8. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    9. F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
    10. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    11. A.G. Holder & J.F. Sturm & S. Zhang, 1998. "Analytic Central Path, Sensitivity Analysis and Parametric Linear Programming," Tinbergen Institute Discussion Papers 98-003/4, Tinbergen Institute.
    12. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Other publications TiSEM b25faf5d-0142-4e14-b598-a, Tilburg University, School of Economics and Management.
    13. F. A. Potra & R. Sheng, 1998. "Superlinearly Convergent Infeasible-Interior-Point Algorithm for Degenerate LCP," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 249-269, May.
    14. Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
    15. Zhongyi Liu & Yue Chen & Wenyu Sun & Zhihui Wei, 2012. "A Predictor-corrector algorithm with multiple corrections for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 52(2), pages 373-391, June.
    16. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    17. Huhn, Petra & Wehlitz, Verena, 2009. "Average case complexity results for a centering algorithm for linear programming problems under Gaussian distributions," European Journal of Operational Research, Elsevier, vol. 194(2), pages 377-389, April.
    18. C. K. Sim & G. Zhao, 2008. "Asymptotic Behavior of Helmberg-Kojima-Monteiro (HKM) Paths in Interior-Point Methods for Monotone Semidefinite Linear Complementarity Problems: General Theory," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 11-25, April.
    19. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    20. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:48:y:2011:i:3:p:453-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.