IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i5d10.1007_s00180-023-01385-x.html
   My bibliography  Save this article

Jackknife empirical likelihood based diagnostic checking for Ar(p) models

Author

Listed:
  • Yawen Fan

    (Jiangxi University of Finance and Economics)

  • Xiaohui Liu

    (Jiangxi University of Finance and Economics)

  • Yang Cao

    (Jiangxi University of Finance and Economics)

  • Shaochu Liu

    (Jiangxi University of Finance and Economics)

Abstract

Diagnostic checking is an important predefined step before using autoregressive models. Although many portmanteau tests were proposed for diagnostic checking, they still struggle with the issue of significant size distortion. In this paper, we develop new diagnostic checking methods based on jackknife empirical likelihood. It is demonstrated that the suggested testing statistics asymptotically have a typical chi-squared distribution. To verify the performance of the finite sample, some simulations are constructed. Additionally, a real example of five agricultural futures is provided to illustrate the merits of our diagnostic checking procedure.

Suggested Citation

  • Yawen Fan & Xiaohui Liu & Yang Cao & Shaochu Liu, 2024. "Jackknife empirical likelihood based diagnostic checking for Ar(p) models," Computational Statistics, Springer, vol. 39(5), pages 2479-2509, July.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01385-x
    DOI: 10.1007/s00180-023-01385-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01385-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01385-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    2. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    3. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    4. Kangni Alemdjrodo & Yichuan Zhao, 2019. "Reduce the computation in jackknife empirical likelihood for comparing two correlated Gini indices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(4), pages 849-866, October.
    5. Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2002. "Testing For Zero Autocorrelation In The Presence Of Statistical Dependence," Econometric Theory, Cambridge University Press, vol. 18(3), pages 730-743, June.
    6. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    7. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    2. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    3. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    4. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    5. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    7. Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
    8. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    9. Pedro H. C. Sant’Anna, 2017. "Testing for Uncorrelated Residuals in Dynamic Count Models With an Application to Corporate Bankruptcy," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 349-358, July.
    10. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    11. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    12. Adrian Wai‐Kong Cheung & Jen‐Je Su & Astrophel Kim Choo, 2012. "Are exchange rates serially correlated? New evidence from the Euro FX markets," Review of Financial Economics, John Wiley & Sons, vol. 21(1), pages 14-20, January.
    13. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    14. Joseph P. Romano & Marius A. Tirlea, 2022. "Permutation testing for dependence in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 781-807, September.
    15. Yongli Sang & Xin Dang & Yichuan Zhao, 2020. "Depth-based weighted jackknife empirical likelihood for non-smooth U-structure equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 573-598, June.
    16. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    17. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    18. Gençay, Ramazan & Signori, Daniele, 2015. "Multi-scale tests for serial correlation," Journal of Econometrics, Elsevier, vol. 184(1), pages 62-80.
    19. David Harris & Hsein Kew, 2014. "Portmanteau Autocorrelation Tests Under Q-Dependence And Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 203-217, May.
    20. Roy, Archi & Soni, Anchal & Deb, Soudeep, 2023. "A wavelet-based methodology to compare the impact of pandemic versus Russia–Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets," Energy Economics, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01385-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.