IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i8d10.1007_s00362-024-01597-3.html
   My bibliography  Save this article

Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods

Author

Listed:
  • David R. Bickel

    (University of North Carolina at Greensboro, The Graduate School)

Abstract

Using statistical methods to analyze data requires considering the data set to be randomly generated from a probability distribution that is unknown but idealized according to a mathematical model consisting of constraints, assumptions about the distribution. Since the choice of such a model is up to the scientist, there is an understandable bias toward choosing models that make scientific conclusions appear more certain than they really are. There is a similar bias in the scientist’s choice of whether to use Bayesian or frequentist methods. This article provides tools to mitigate both of those biases on the basis of a principle of information theory. It is found that the same principle unifies Bayesianism with the fiducial version of frequentism. The principle arguably overcomes not only the main objections against fiducial inference but also the main Bayesian objection against the use of confidence intervals.

Suggested Citation

  • David R. Bickel, 2024. "Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods," Statistical Papers, Springer, vol. 65(8), pages 5389-5407, October.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01597-3
    DOI: 10.1007/s00362-024-01597-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01597-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01597-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan Martin & Chuanhai Liu, 2013. "Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 301-313, March.
    2. David R. Bickel, 2022. "Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(10), pages 3142-3163, May.
    3. Lu Tian & Rui Wang & Tianxi Cai & Lee-Jen Wei, 2011. "The Highest Confidence Density Region and Its Usage for Joint Inferences about Constrained Parameters," Biometrics, The International Biometric Society, vol. 67(2), pages 604-610, June.
    4. Giffin, Adom & Cafaro, Carlo & Ali, Sean Alan, 2016. "Application of the maximum relative entropy method to the physics of ferromagnetic materials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 11-26.
    5. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    6. Joshua Habiger & Ye Liang, 2022. "Publication Policies for Replicable Research and the Community-Wide False Discovery Rate," The American Statistician, Taylor & Francis Journals, vol. 76(2), pages 131-141, April.
    7. Hannig, Jan & Iyer, Hari & Patterson, Paul, 2006. "Fiducial Generalized Confidence Intervals," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 254-269, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
    2. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    3. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    4. Piero Veronese & Eugenio Melilli, 2015. "Fiducial and Confidence Distributions for Real Exponential Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 471-484, June.
    5. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.
    6. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    7. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    8. Yuliang Yin & Bingbing Wang, 2016. "The Agreement between the Generalized Value and Bayesian Evidence in the One-Sided Testing Problem," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-7, May.
    9. Nicolas Miconnet & Marie Cornu & Annie Beaufort & Laurent Rosso & Jean‐Baptiste Denis, 2005. "Uncertainty Distribution Associated with Estimating a Proportion in Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 39-48, February.
    10. Hannig, Jan & Lai, Randy C.S. & Lee, Thomas C.M., 2014. "Computational issues of generalized fiducial inference," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 849-858.
    11. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    12. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
    13. Weizhong Tian & Yaoting Yang & Tingting Tong, 2022. "Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    14. Piao Chen & Zhi‐Sheng Ye & Xun Xiao, 2019. "Pairwise model discrimination with applications in lifetime distributions and degradation processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 675-686, December.
    15. CHEN, Piao & YE, Zhi-Sheng, 2018. "A systematic look at the gamma process capability indices," European Journal of Operational Research, Elsevier, vol. 265(2), pages 589-597.
    16. Bickel David R., 2012. "Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-34, February.
    17. Philip L.H. Yu & Thomas Mathew & Yuanyuan Zhu, 2017. "A generalized pivotal quantity approach to portfolio selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1402-1420, June.
    18. Nezakati, Ensiyeh & Pircalabelu, Eugen, 2021. "Unbalanced distributed estimation and inference for precision matrices," LIDAM Discussion Papers ISBA 2021031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Theerapong Kaewprasert & Sa-Aat Niwitpong & Suparat Niwitpong, 2022. "Simultaneous Confidence Intervals for the Ratios of the Means of Zero-Inflated Gamma Distributions and Its Application," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
    20. Liu, Xuhua & Xu, Xingzhong, 2010. "A new generalized p-value approach for testing the homogeneity of variances," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1486-1491, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01597-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.