IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i2d10.1007_s00180-019-00916-9.html
   My bibliography  Save this article

Improving accuracy of financial distress prediction by considering volatility: an interval-data-based discriminant model

Author

Listed:
  • Rong Guan

    (Central University of Finance and Economics)

  • Huiwen Wang

    (Beihang University
    Beijing Advanced Innovation Center for Big Data and Brain Computing)

  • Haitao Zheng

    (Beihang University
    MoE Key Laboratory of Complex System Analysis and Management Decision)

Abstract

Financial distress prediction models are much challenged in identifying a distressed company two or more years prior to the occurrence of its actual distress, on the grounds that the distress signal is too weak to be captured at an early stage. The paper innovatively proposes to predict the distressed companies by a factorial discriminant model based on interval data. The main idea is that we use a new data representation, i.e., interval data, to summarize four-quarter financial data, and then build a interval-data-based discriminant model, namely i-score model. Interval data makes both average and volatility information comprehensively included in the proposed prediction model, which is expected to improve prediction performance on the distressed companies. A comparison based on a real data case from China’s stock market is conducted. The i-score model is compared with five commonly used models that are based on numerical data. The empirical study shows that i-score model is more accurate and more reliable in identification of companies in high risk of financial distress in advance of 2 years.

Suggested Citation

  • Rong Guan & Huiwen Wang & Haitao Zheng, 2020. "Improving accuracy of financial distress prediction by considering volatility: an interval-data-based discriminant model," Computational Statistics, Springer, vol. 35(2), pages 491-514, June.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00916-9
    DOI: 10.1007/s00180-019-00916-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00916-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00916-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    2. Ling T. He & Chenyi Hu, 2007. "Impacts of interval measurement on studies of economic variability: Evidence from stock market variability forecasting," Journal of Risk Finance, Emerald Group Publishing, vol. 8(5), pages 489-507, November.
    3. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    4. A. Silva & Paula Brito, 2015. "Discriminant Analysis of Interval Data: An Assessment of Parametric and Distance-Based Approaches," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 516-541, October.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Xu Xiaosi & Chen Ying & Zheng Haitao, 2011. "The comparison of enterprise bankruptcy forecasting method," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 301-308, September.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    9. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    10. António Silva & Paula Brito, 2006. "Linear discriminant analysis for interval data," Computational Statistics, Springer, vol. 21(2), pages 289-308, June.
    11. Chen, Jing & Chollete, Lorán & Ray, Rina, 2010. "Financial distress and idiosyncratic volatility: An empirical investigation," Journal of Financial Markets, Elsevier, vol. 13(2), pages 249-267, May.
    12. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    13. Dichev, Ilia D. & Tang, Vicki Wei, 2009. "Earnings volatility and earnings predictability," Journal of Accounting and Economics, Elsevier, vol. 47(1-2), pages 160-181, March.
    14. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desheng Dash Wu & Wolfgang Karl Härdle, 2020. "Service data analytics and business intelligence 2017," Computational Statistics, Springer, vol. 35(2), pages 423-426, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongcheol Kim & Inro Lee, 2020. "The financial distress pricing puzzle in banking firms," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1351-1384, June.
    2. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    3. Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Pricing default risk: The good, the bad, and the anomaly," Journal of Financial Stability, Elsevier, vol. 26(C), pages 190-213.
    4. Francis, Bill & Hasan, Iftekhar & Liu, Liuling & Wu, Qiang & Zhao, Yijiang, 2021. "Financial analysts' career concerns and the cost of private debt," Journal of Corporate Finance, Elsevier, vol. 67(C).
    5. Ester Chen & Ilanit Gavious & Nadav Steinberg, 2019. "Dividends from unrealized earnings and default risk," Review of Accounting Studies, Springer, vol. 24(2), pages 491-535, June.
    6. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    7. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    8. Viral Acharya & Sergei A. Davydenko & Ilya A. Strebulaev, 2012. "Cash Holdings and Credit Risk," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3572-3609.
    9. Deniz Anginer & Çelim Yıldızhan, 2018. "Is There a Distress Risk Anomaly? Pricing of Systematic Default Risk in the Cross-section of Equity Returns [The risk-adjusted cost of financial distress]," Review of Finance, European Finance Association, vol. 22(2), pages 633-660.
    10. Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Informational efficiency of credit ratings," Working Papers 14, xKDR.
    11. Evangelos C. Charalambakis & Ian Garrett, 2016. "On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 1-28, July.
    12. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    13. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    14. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    15. Maria Correia & Johnny Kang & Scott Richardson, 2018. "Asset volatility," Review of Accounting Studies, Springer, vol. 23(1), pages 37-94, March.
    16. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    17. Jens Hilscher & Mungo Wilson, 2017. "Credit Ratings and Credit Risk: Is One Measure Enough?," Management Science, INFORMS, vol. 63(10), pages 3414-3437, October.
    18. Evangelos C. Charalambakis, 2014. "On corporate financial distress prediction: what can we learn from private firms in a small open economy?," Working Papers 188, Bank of Greece.
    19. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
    20. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00916-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.