IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i2d10.1007_s00180-019-00892-0.html
   My bibliography  Save this article

Editorial on the special issue on Functional Data Analysis and Related Topics

Author

Listed:
  • Germán Aneiros

    (Universidade da Coruña
    ITMATI)

  • Ricardo Cao

    (Universidade da Coruña
    ITMATI)

  • Philippe Vieu

    (Université Paul Sabatier)

Abstract

No abstract is available for this item.

Suggested Citation

  • Germán Aneiros & Ricardo Cao & Philippe Vieu, 2019. "Editorial on the special issue on Functional Data Analysis and Related Topics," Computational Statistics, Springer, vol. 34(2), pages 447-450, June.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-019-00892-0
    DOI: 10.1007/s00180-019-00892-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00892-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00892-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
    2. Jan Koláček & Ondřej Pokora & Daniela Kuruczová & Tzai-Wen Chiu, 2019. "Benefits of functional PCA in the analysis of single-trial auditory evoked potentials," Computational Statistics, Springer, vol. 34(2), pages 617-629, June.
    3. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    4. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    5. O. I. Traore & P. Cristini & N. Favretto-Cristini & L. Pantera & P. Vieu & S. Viguier-Pla, 2019. "Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches," Computational Statistics, Springer, vol. 34(2), pages 631-652, June.
    6. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    7. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    8. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
    9. Gianluca Sottile & Giada Adelfio, 2019. "Clusters of effects curves in quantile regression models," Computational Statistics, Springer, vol. 34(2), pages 551-569, June.
    10. Enea G. Bongiorno & Aldo Goia & Philippe Vieu, 2019. "Modeling functional data: a test procedure," Computational Statistics, Springer, vol. 34(2), pages 451-468, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bongiorno, E.G. & Goia, A. & Vieu, P., 2020. "Estimating the complexity index of functional data: Some asymptotics," Statistics & Probability Letters, Elsevier, vol. 161(C).
    2. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Helander, Sami & Laketa, Petra & Ilmonen, Pauliina & Nagy, Stanislav & Van Bever, Germain & Viitasaari, Lauri, 2022. "Integrated shape-sensitive functional metrics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    5. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    8. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Ali Laksaci & Elias Ould Saïd & Mustapha Rachdi, 2021. "Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 895-911, August.
    10. Ibrahim M. Almanjahie & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Estimating the Conditional Density in Scalar-On-Function Regression Structure: k -N-N Local Linear Approach," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    11. Ibrahim M. Almanjahie & Salim Bouzebda & Zoulikha Kaid & Ali Laksaci, 2024. "The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 1007-1035, November.
    12. Amel, Azzi & Ali, Laksaci & Elias, Ould Saïd, 2022. "On the robustification of the kernel estimator of the functional modal regression," Statistics & Probability Letters, Elsevier, vol. 181(C).
    13. Novo, Silvia & Aneiros, Germán & Vieu, Philippe, 2021. "A kNN procedure in semiparametric functional data analysis," Statistics & Probability Letters, Elsevier, vol. 171(C).
    14. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
    15. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    16. Roy, Arkaprava & Ghosal, Subhashis, 2022. "Optimal Bayesian smoothing of functional observations over a large graph," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
    2. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    3. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    4. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    6. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    7. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    8. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.
    9. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.
    10. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Aleida Cobas-Valdés & Javier Fernández-Macho, 2021. "Gender Dissimilarities in Human Capital Transferability of Cuban Immigrants in the US: A Clustering Quantile Regression Coefficients Approach with Consideration of Implications for Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-12, October.
    12. Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
    13. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    14. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    15. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    17. Wafaa Benyelles & Tahar Mourid, 2012. "On a minimum distance estimate of the period in functional autoregressive processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1703-1718, February.
    18. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    19. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    20. Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-019-00892-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.