IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i1d10.1007_s00180-018-0815-x.html
   My bibliography  Save this article

The performance of latent growth curve model-based structural equation model trees to uncover population heterogeneity in growth trajectories

Author

Listed:
  • Satoshi Usami

    (University of Tokyo)

  • Ross Jacobucci

    (University of Notre Dame)

  • Timothy Hayes

    (Florida International University)

Abstract

Behavioral researchers have shown growing interest in structural equation model trees (SEM Trees), a new recursive partitioning-based technique for detecting population heterogeneity. In the present research, we conducted a large-scale simulation to investigate the performance of latent growth curve model (LGCM)-based SEM Trees for uncovering between-individual differences in patterns of within-individual change. Simulation results showed that the correct estimation rates of the number of classes are most strongly related to the agreement rate of the covariate with its true latent profile, and the number of true classes also has a serious negative impact on correct estimation rates of the number of classes. SEM Trees is not always sensitive to the influence of model misspecification, and its impact differs according to a complex function of the types of misspecification as well as the statistical properties of the template model. On the whole, LGCM-based SEM Trees is a robust and stable approach under possible model misspecifications.

Suggested Citation

  • Satoshi Usami & Ross Jacobucci & Timothy Hayes, 2019. "The performance of latent growth curve model-based structural equation model trees to uncover population heterogeneity in growth trajectories," Computational Statistics, Springer, vol. 34(1), pages 1-22, March.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0815-x
    DOI: 10.1007/s00180-018-0815-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0815-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0815-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hayes, Timothy & McArdle, John J., 2017. "Should we impute or should we weight? Examining the performance of two CART-based techniques for addressing missing data in small sample research with nonnormal variables," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 35-52.
    2. Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
    3. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    4. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    5. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    6. Benjamin E. Leiby & Mary D. Sammel & Thomas R. Ten Have & Kevin G. Lynch, 2009. "Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 505-524, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius Diniz Mayrink & Renato Valladares Panaro & Marcelo Azevedo Costa, 2021. "Structural equation modeling with time dependence: an application comparing Brazilian energy distributors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 353-383, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    2. Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
    3. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    4. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    5. Julia Malinka & Kristin Mitte & Matthias Ziegler, 2024. "Universal Basic Income and Autonomous Work Motivation: Influences on Trajectories of Mental Health in Employees," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 19(4), pages 1967-1996, August.
    6. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    7. Sonia Nawrocka & Hans De Witte & Margherita Pasini & Margherita Brondino, 2023. "A Person-Centered Approach to Job Insecurity: Is There a Reciprocal Relationship between the Quantitative and Qualitative Dimensions of Job Insecurity?," IJERPH, MDPI, vol. 20(7), pages 1-27, March.
    8. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    9. Md. Mominur Rahman & Bilkis Akhter, 2021. "The impact of investment in human capital on bank performance: evidence from Bangladesh," Future Business Journal, Springer, vol. 7(1), pages 1-13, December.
    10. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    11. Masashi Soga & Kevin J. Gaston & Yuichi Yamaura & Kiyo Kurisu & Keisuke Hanaki, 2016. "Both Direct and Vicarious Experiences of Nature Affect Children’s Willingness to Conserve Biodiversity," IJERPH, MDPI, vol. 13(6), pages 1-12, May.
    12. César Merino-Soto & Gina Chávez-Ventura & Verónica López-Fernández & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    13. Stephen Toit & Robert Cudeck, 2009. "Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 65-82, March.
    14. Roe, R.A., 2005. "Studying time in organizational behavior," Research Memorandum 046, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    15. Nathaniel Oliver Iotti & Damiano Menin & Tomas Jungert, 2022. "Early Adolescents’ Motivations to Defend Victims of Cyberbullying," IJERPH, MDPI, vol. 19(14), pages 1-9, July.
    16. AJ Golio, 2024. "Whose Neighborhood Now? Gentrification and Community Life in Low-Income Urban Neighborhoods," Working Papers 24-29, Center for Economic Studies, U.S. Census Bureau.
    17. Peter Tavel & Bibiana Jozefiakova & Peter Telicak & Jana Furstova & Michal Puza & Natalia Kascakova, 2022. "Psychometric Analysis of the Shortened Version of the Spiritual Well-Being Scale on the Slovak Population (SWBS-Sk)," IJERPH, MDPI, vol. 19(1), pages 1-12, January.
    18. Allen, Jaime & Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella & Ortúzar, Juan de Dios, 2019. "The role of critical incidents and involvement in transit satisfaction and loyalty," Transport Policy, Elsevier, vol. 75(C), pages 57-69.
    19. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    20. Andreea-Ionela Puiu & Anca Monica Ardeleanu & Camelia Cojocaru & Anca Bratu, 2021. "Exploring the Effect of Status Quo, Innovativeness, and Involvement Tendencies on Luxury Fashion Innovations: The Mediation Role of Status Consumption," Mathematics, MDPI, vol. 9(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0815-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.