IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i3d10.1007_s00180-017-0789-0.html
   My bibliography  Save this article

Inferences on the common mean of several normal populations under heteroscedasticity

Author

Listed:
  • Ahad Malekzadeh

    (K. N. Toosi University of Technology)

  • Mahmood Kharrati-Kopaei

    (Shiraz University)

Abstract

In this paper, we consider the problem of making inferences on the common mean of several normal populations when sample sizes and population variances are possibly unequal. We are mainly concerned with testing hypothesis and constructing confidence interval for the common normal mean. Several researchers have considered this problem and many methods have been proposed based on the asymptotic or approximation results, generalized inferences, and exact pivotal methods. In addition, Chang and Pal (Comput Stat Data Anal 53:321–333, 2008) proposed a parametric bootstrap (PB) approach for this problem based on the maximum likelihood estimators. We also propose a PB approach for making inferences on the common normal mean under heteroscedasticity. The advantages of our method are: (i) it is much simpler than the PB test proposed by Chang and Pal (Comput Stat Data Anal 53:321–333, 2008) since our test statistic is not based on the maximum likelihood estimators which do not have explicit forms, (ii) inverting the acceptance region of test yields a genuine confidence interval in contrast to some exact methods such as the Fisher’s method, (iii) it works well in terms of controlling the Type I error rate for small sample sizes and the large number of populations in contrast to Chang and Pal (Comput Stat Data Anal 53:321–333, 2008) method, (iv) finally, it has higher power than recommended methods such as the Fisher’s exact method.

Suggested Citation

  • Ahad Malekzadeh & Mahmood Kharrati-Kopaei, 2018. "Inferences on the common mean of several normal populations under heteroscedasticity," Computational Statistics, Springer, vol. 33(3), pages 1367-1384, September.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-017-0789-0
    DOI: 10.1007/s00180-017-0789-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0789-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0789-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
    2. Andrew L. Rukhin, 2017. "Estimation of the common mean from heterogeneous normal observations with unknown variances," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1601-1618, November.
    3. K. Krishnamoorthy & Yong Lu, 2003. "Inferences on the Common Mean of Several Normal Populations Based on the Generalized Variable Method," Biometrics, The International Biometric Society, vol. 59(2), pages 237-247, June.
    4. Hannig, Jan & Iyer, Hari & Patterson, Paul, 2006. "Fiducial Generalized Confidence Intervals," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 254-269, March.
    5. William R. Fairweather, 1972. "A Method of Obtaining an Exact Confidence Interval for the Common Mean of Several Normal Populations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(3), pages 229-233, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malekzadeh, Ahad & Esmaeli-Ayan, Asghar, 2021. "An exact method for testing equality of several groups in panel data models," Statistics & Probability Letters, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2017. "Objective Bayesian testing on the common mean of several normal distributions under divergence-based priors," Computational Statistics, Springer, vol. 32(1), pages 71-91, March.
    2. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    3. Pravash Jena & Manas Ranjan Tripathy & Somesh Kumar, 2023. "Point and Interval Estimation of Powers of Scale Parameters for Two Normal Populations with a Common Mean," Statistical Papers, Springer, vol. 64(5), pages 1775-1804, October.
    4. Malekzadeh, Ahad & Kharrati-Kopaei, Mahmood, 2017. "An exact method for making inferences on the common location parameter of several heterogeneous exponential populations: Complete and censored data," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 210-215.
    5. Roy, Anindya & Bose, Arup, 2009. "Coverage of generalized confidence intervals," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1384-1397, August.
    6. Wang, Dan & Tian, Lili, 2017. "Parametric methods for confidence interval estimation of overlap coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 12-26.
    7. Russell J. Bowater, 2017. "A defence of subjective fiducial inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 177-197, April.
    8. Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
    9. H. Zakerzadeh & A. Jafari, 2015. "Inference on the parameters of two Weibull distributions based on record values," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 25-40, March.
    10. Yuliang Yin & Bingbing Wang, 2016. "The Agreement between the Generalized Value and Bayesian Evidence in the One-Sided Testing Problem," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-7, May.
    11. Hannig, Jan & Lai, Randy C.S. & Lee, Thomas C.M., 2014. "Computational issues of generalized fiducial inference," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 849-858.
    12. A. Malekzadeh & M. Kharrati-Kopaei & S. Sadooghi-Alvandi, 2014. "Comparing exponential location parameters with several controls under heteroscedasticity," Computational Statistics, Springer, vol. 29(5), pages 1083-1094, October.
    13. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Panel Data Models Usingε-Contamination," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Panel Modeling, Micro Applications, and Econometric Methodology, volume 43, pages 307-336, Emerald Group Publishing Limited.
    14. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    15. Weizhong Tian & Yaoting Yang & Tingting Tong, 2022. "Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    16. Piao Chen & Zhi‐Sheng Ye & Xun Xiao, 2019. "Pairwise model discrimination with applications in lifetime distributions and degradation processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 675-686, December.
    17. CHEN, Piao & YE, Zhi-Sheng, 2018. "A systematic look at the gamma process capability indices," European Journal of Operational Research, Elsevier, vol. 265(2), pages 589-597.
    18. Kharrati-Kopaei, Mahmood & Malekzadeh, Ahad & Sadooghi-Alvandi, Mohammad, 2013. "Simultaneous fiducial generalized confidence intervals for the successive differences of exponential location parameters under heteroscedasticity," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1547-1552.
    19. Philip L.H. Yu & Thomas Mathew & Yuanyuan Zhu, 2017. "A generalized pivotal quantity approach to portfolio selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1402-1420, June.
    20. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-017-0789-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.