IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i1d10.1007_s00180-017-0772-9.html
   My bibliography  Save this article

Posterior simulation via the exponentially tilted signed root log-likelihood ratio

Author

Listed:
  • Samer A. Kharroubi

    (American University of Beirut)

Abstract

We explore the use of importance sampling based on exponentially tilted signed root log-likelihood ratios for Bayesian computation. Approximations based on exponentially tilted signed root log-likelihood ratios are used in two distinct ways; firstly, to define an importance function with antithetic variates and, secondly, to define suitable control variates for variance reduction. These considerations give rise to alternative simulation-consistent schemes to other importance sampling techniques (for example, conventional and/or adaptive importance sampling) for Bayesian computation in moderately parameterized regular problems. The schemes based on control variates can also be viewed as usefully supplementing computations based on asymptotic approximations by supplying external estimates of error. The methods are illustrated by a censored regression model and a more challenging 12-parameter nonlinear repeated measures model for bacterial clearance.

Suggested Citation

  • Samer A. Kharroubi, 2018. "Posterior simulation via the exponentially tilted signed root log-likelihood ratio," Computational Statistics, Springer, vol. 33(1), pages 213-234, March.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0772-9
    DOI: 10.1007/s00180-017-0772-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0772-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0772-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2013. "Efficient Importance Sampling for Rare Event Simulation with Applications," Papers 1302.0583, arXiv.org.
    2. S. A. Kharroubi & T. J. Sweeting, 2016. "Exponential tilting in Bayesian asymptotics," Biometrika, Biometrika Trust, vol. 103(2), pages 337-349.
    3. Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784.
    4. Trevor Sweeting & Samer Kharroubi, 2003. "Some new formulae for posterior expectations and Bartlett corrections," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 497-521, December.
    5. van Dijk, H. K. & Hop, J. P. & Louter, A. S., 1986. "An Algorithm For The Computation Of Posterior Moments And Densities Using Simple Importance Sampling," Econometric Institute Archives 272354, Erasmus University Rotterdam.
    6. Cerquetti, Annalisa, 2007. "A note on Bayesian nonparametric priors derived from exponentially tilted Poisson-Kingman models," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1705-1711, December.
    7. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    8. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    2. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    3. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    4. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    5. Levent Kutlu & Robin C. Sickles & Mike G. Tsionas & Emmanuel Mamatzakis, 2022. "Heterogeneous decision-making and market power: an application to Eurozone banks," Empirical Economics, Springer, vol. 63(6), pages 3061-3092, December.
    6. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    7. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    8. Camponovo, Lorenzo & Otsu, Taisuke, 2014. "On Bartlett correctability of empirical likelihood in generalized power divergence family," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 38-43.
    9. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    10. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    11. De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
    12. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    13. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    14. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    15. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015. "Nonparametric likelihood for volatility under high frequency data," STICERD - Econometrics Paper Series /2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    17. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    18. Bruce N. Lehmann, 2005. "The Role of Beliefs in Inference for Rational Expectations Models," NBER Working Papers 11758, National Bureau of Economic Research, Inc.
    19. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    20. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0772-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.