Posterior simulation via the exponentially tilted signed root log-likelihood ratio
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-017-0772-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2013. "Efficient Importance Sampling for Rare Event Simulation with Applications," Papers 1302.0583, arXiv.org.
- Trevor Sweeting & Samer Kharroubi, 2003. "Some new formulae for posterior expectations and Bartlett corrections," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 497-521, December.
- van Dijk, H. K. & Hop, J. P. & Louter, A. S., 1986. "An Algorithm For The Computation Of Posterior Moments And Densities Using Simple Importance Sampling," Econometric Institute Archives 272354, Erasmus University Rotterdam.
- S. A. Kharroubi & T. J. Sweeting, 2016. "Exponential tilting in Bayesian asymptotics," Biometrika, Biometrika Trust, vol. 103(2), pages 337-349.
- Cerquetti, Annalisa, 2007. "A note on Bayesian nonparametric priors derived from exponentially tilted Poisson-Kingman models," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1705-1711, December.
- Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
- Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
- Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Jean-Pierre Florens & Anna Simoni, 2021.
"Gaussian Processes and Bayesian Moment Estimation,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
- Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.
- Jean-Pierre Florens & Anna Simoni, 2019. "Gaussian Processes and Bayesian Moment Estimation," Post-Print hal-02903252, HAL.
- Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Levent Kutlu & Robin C. Sickles & Mike G. Tsionas & Emmanuel Mamatzakis, 2022. "Heterogeneous decision-making and market power: an application to Eurozone banks," Empirical Economics, Springer, vol. 63(6), pages 3061-3092, December.
- Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
- Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
- Camponovo, Lorenzo & Otsu, Taisuke, 2014.
"On Bartlett correctability of empirical likelihood in generalized power divergence family,"
Statistics & Probability Letters, Elsevier, vol. 86(C), pages 38-43.
- Lorenzo Camponovo & Taisuke Otsu, 2011. "On Bartlett Correctability of Empirical Likelihood in Generalized �Power Divergence Family," Cowles Foundation Discussion Papers 1825, Cowles Foundation for Research in Economics, Yale University.
- Camponovo, Lorenzo & Otsu, Taisuke, 2014. "On Bartlett correctability of empirical likelihood in generalized power divergence family," LSE Research Online Documents on Economics 55597, London School of Economics and Political Science, LSE Library.
- Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
- Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
- De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
- Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
- Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015.
"Nonparametric likelihood for volatility under high frequency data,"
STICERD - Econometrics Paper Series
/2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2018. "Nonparametric Likelihood for Volatility Under High Frequency Data," School of Economics Discussion Papers 0318, School of Economics, University of Surrey.
- Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
- Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
- Bruce N. Lehmann, 2005. "The Role of Beliefs in Inference for Rational Expectations Models," NBER Working Papers 11758, National Bureau of Economic Research, Inc.
- Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
- Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
More about this item
Keywords
Bayesian computation; Control variates; Exponential tilting; Signed root log-likelihood ratio; Importance sampling; Variance reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0772-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.