Reduced $$k$$ k -means clustering with MCA in a low-dimensional space
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-014-0544-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
- Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.
- Heungsun Hwang & Hec Montréal & William Dillon & Yoshio Takane, 2006. "An Extension of Multiple Correspondence Analysis for Identifying Heterogeneous Subgroups of Respondents," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 161-171, March.
- Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Stef Buuren & Willem Heiser, 1989. "Clusteringn objects intok groups under optimal scaling of variables," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 699-706, September.
- Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
- Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
- M. Velden & A. Iodice D’Enza & F. Palumbo, 2017. "Cluster Correspondence Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 158-185, March.
- Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
- Luca Greco & Antonio Lucadamo & Pietro Amenta, 2020. "An Impartial Trimming Approach for Joint Dimension and Sample Reduction," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 769-788, October.
- DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009.
"A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
- Selin Atalay & Wayne S. Desarbo & Simon J. Blanchard, 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Post-Print hal-00458377, HAL.
- Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
- Michael C. Thrun & Alfred Ultsch, 2021. "Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 280-312, July.
- van de Velden, M. & Iodice D' Enza, A. & Palumbo, F., 2014. "Cluster Correspondence Analysis," Econometric Institute Research Papers EI 2014-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
- Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
- Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.
- Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
- Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
- Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
- Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
- Yoshikazu Terada, 2015. "Strong consistency of factorial $$K$$ K -means clustering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 335-357, April.
- Mario Musella & Ida Camminatiello & Francesco Izzo, 2024. "Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania," Mathematics, MDPI, vol. 12(15), pages 1-17, July.
- Efthymios Costa & Ioanna Papatsouma & Angelos Markos, 2023. "Benchmarking distance-based partitioning methods for mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 701-724, September.
- Rosaria Lombardo & Ida Camminatiello & Eric J. Beh, 2019. "Assessing Satisfaction with Public Transport Service by Ordered Multiple Correspondence Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 355-369, May.
More about this item
Keywords
Categorical data; Simultaneous analysis; ALS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:2:p:463-475. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.