IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2301-d1440886.html
   My bibliography  Save this article

Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania

Author

Listed:
  • Mario Musella

    (Department of Social Sciences, University of Naples Federico II, Vico Monte della Pietà, 80138 Napoli, Italy)

  • Ida Camminatiello

    (Economics Department, University of Campania, Corso Gran Priorato di Malta, 81043 Capua, Italy)

  • Francesco Izzo

    (Economics Department, University of Campania, Corso Gran Priorato di Malta, 81043 Capua, Italy)

Abstract

The United Nations’ Agenda 2030 has established a series of Sustainable Development Goals to address global challenges, including poverty, food insecurity, access to education, and social inequality. In this context, charitable organizations such as Caritas play a crucial role in mitigating the negative effects of these challenges and promoting fair and sustainable development. This study aims to analyze prevalent needs among individuals seeking assistance from Caritas in Campania and examine how the organization contributes to achieving the Agenda 2030 Goals in the region. The statistical investigation techniques considered include tandem analysis a dimension-reduction technique, such as multiple factor analysis, and then a cluster analysis to identify similar groups of individuals. These exploratory data analysis methods have allowed for the identification of common needs, including food assistance, support for education, employment, and housing assistance. Subsequently, Caritas programs and initiatives aimed at meeting these needs and promoting sustainable development are explored. The results indicate that Caritas plays a significant role in addressing the urgent needs of the vulnerable population in Campania and contributes to the goals of Agenda 2030, particularly those related to poverty alleviation, immigration, health promotion, education, employment, and the reduction of social inequalities. This study provides an important perspective on the relevance and effectiveness of Caritas’s work in the context of Agenda 2030.

Suggested Citation

  • Mario Musella & Ida Camminatiello & Francesco Izzo, 2024. "Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania," Mathematics, MDPI, vol. 12(15), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2301-:d:1440886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heungsun Hwang & Hec Montréal & William Dillon & Yoshio Takane, 2006. "An Extension of Multiple Correspondence Analysis for Identifying Heterogeneous Subgroups of Respondents," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 161-171, March.
    2. Cho, Catherine & Kim, Sooyoung & Lee, Jaewook & Lee, Dae-Won, 2006. "A tandem clustering process for multimodal datasets," European Journal of Operational Research, Elsevier, vol. 168(3), pages 998-1008, February.
    3. Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaki Mitsuhiro & Hiroshi Yadohisa, 2015. "Reduced $$k$$ k -means clustering with MCA in a low-dimensional space," Computational Statistics, Springer, vol. 30(2), pages 463-475, June.
    2. M. Velden & A. Iodice D’Enza & F. Palumbo, 2017. "Cluster Correspondence Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 158-185, March.
    3. Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
    4. Dawn Iacobucci & Doug Grisaffe, 2018. "Perceptual maps via enhanced correspondence analysis: representing confidence regions to clarify brand positions," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(3), pages 72-83, September.
    5. van de Velden, M. & Iodice D' Enza, A. & Palumbo, F., 2014. "Cluster Correspondence Analysis," Econometric Institute Research Papers EI 2014-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    7. Rosaria Lombardo & Ida Camminatiello & Eric J. Beh, 2019. "Assessing Satisfaction with Public Transport Service by Ordered Multiple Correspondence Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 355-369, May.
    8. Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
    9. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    10. John Rodwell & Thomas Hendry & Dianne Johnson, 2022. "A Parsimonious Taxonomy of The Newly Retired: Spousal and Disability Combinations Shape Part or Complete Retirement," IJERPH, MDPI, vol. 19(20), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2301-:d:1440886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.