IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i2p435-453.html
   My bibliography  Save this article

Asymptotics for spectral regularization estimators in statistical inverse problems

Author

Listed:
  • Nicolai Bissantz
  • Hajo Holzmann

Abstract

While optimal rates of convergence in L 2 for spectral regularization estimators in statistical inverse problems have been much studied, the pointwise asymptotics for these estimators have received very little consideration. Here, we briefly discuss asymptotic expressions for bias and variance for some such estimators, mainly in deconvolution-type problems, and also show their asymptotic normality. The main part of the paper consists of a simulation study in which we investigate in detail the pointwise finite sample properties, both for deconvolution and the backward heat equation as well as for a regression model involving the Radon transform. In particular we explore the practical use of undersmoothing in order to achieve the nominal coverage probabilities of the confidence intervals. Copyright Springer-Verlag 2013

Suggested Citation

  • Nicolai Bissantz & Hajo Holzmann, 2013. "Asymptotics for spectral regularization estimators in statistical inverse problems," Computational Statistics, Springer, vol. 28(2), pages 435-453, April.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:2:p:435-453
    DOI: 10.1007/s00180-012-0309-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0309-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0309-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Iain M. Johnstone & Gérard Kerkyacharian & Dominique Picard & Marc Raimondo, 2004. "Wavelet deconvolution in a periodic setting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 547-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    2. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(3), pages 522-545, June.
    4. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    5. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    6. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    7. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.
    9. Raymond Carroll & Xiaohong Chen & Yingyao Hu, 2010. "Identification and estimation of nonlinear models using two samples with nonclassical measurement errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 419-423.
    10. Christian Wagner & Ulrich Stadtmüller, 2008. "Asymptotics for TAYLEX and SIMEX estimators in deconvolution of densities," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(6), pages 507-522.
    11. J. Andrés Christen & Bruno Sansó & Mario Santana-Cibrian & Jorge X. Velasco-Hernández, 2016. "Bayesian deconvolution of oil well test data using Gaussian processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 721-737, March.
    12. Matthew Thorpe & Adam M. Johansen, 2018. "Pointwise convergence in probability of general smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 717-744, August.
    13. Raimondo, Marc & Stewart, Michael, 2007. "The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i02).
    14. Clément Marteau, 2010. "The Stein hull," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(6), pages 685-702.
    15. Abbaszadeh, Mohammad & Chesneau, Christophe & Doosti, Hassan, 2012. "Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 932-941.
    16. Xiaohong Chen & Demian Pouzo, 2008. "Estimation of nonparametric conditional moment models with possibly nonsmooth moments," CeMMAP working papers CWP12/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    18. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    19. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    20. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:2:p:435-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.