IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/895.html
   My bibliography  Save this paper

Semiparametric Estimation of Random Coefficients in Structural Economic Models

Author

Listed:
  • Stefan Hoderlein

    (Boston College)

  • Lars Nesheim

    (University College London)

  • Anna Simoni

    (CNRS - CREST)

Abstract

This paper discusses nonparametric estimation of the distribution of random coefficients in a structural model that is nonlinear in the random coefficients. We establish that the problem of recovering the probability density function (pdf ) of random parameters falls into the class of convexly-constrained inverse problems. The framework offers an estimation method that separates computational solution of the structural model from estimation. We first discuss nonparametric identification. Then, we propose two alternative estimation procedures to estimate the density and derive their asymptotic properties. Our general framework allows us to deal with unobservable nuisance variables, e.g., measurement error, but also covers the case when there are no such nuisance variables. Finally, Monte Carlo experiments for several structural models are provided which illustrate the performance of our estimation procedure.

Suggested Citation

  • Stefan Hoderlein & Lars Nesheim & Anna Simoni, 2015. "Semiparametric Estimation of Random Coefficients in Structural Economic Models," Boston College Working Papers in Economics 895, Boston College Department of Economics, revised 01 Feb 2016.
  • Handle: RePEc:boc:bocoec:895
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp895.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(3), pages 804-837, June.
    4. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72, Elsevier.
    5. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    7. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, October.
    8. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    9. Orazio P. Attanasio & Guglielmo Weber, 2010. "Consumption and Saving: Models of Intertemporal Allocation and Their Implications for Public Policy," Journal of Economic Literature, American Economic Association, vol. 48(3), pages 693-751, September.
    10. Sandra Campo & Emmanuel Guerre & Isabelle Perrigne & Quang Vuong, 2003. "Semiparametric Estimation of First-price Auctions with Risk Averse Bidders," Working Papers 2003-09, Center for Research in Economics and Statistics.
    11. Marc Henry & Yuichi Kitamura & Bernard Salanie, 2010. "Identifying Finite Mixtures in Econometric Models," Cowles Foundation Discussion Papers 1767, Cowles Foundation for Research in Economics, Yale University, revised Jan 2013.
    12. Han Hong & Matthew Shum, 2010. "Pairwise-Difference Estimation of a Dynamic Optimization Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 273-304.
    13. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    14. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    15. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    16. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    17. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    18. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, October.
    19. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, October.
    20. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, October.
    21. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    22. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    23. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    24. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    25. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    26. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    27. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    28. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in economics and econometrics :theory and applications," ULB Institutional Repository 2013/9557, ULB -- Universite Libre de Bruxelles.
    29. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, October.
    30. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress," ULB Institutional Repository 2013/176003, ULB -- Universite Libre de Bruxelles.
    31. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escanciano, Juan Carlos & Hoderlein, Stefan & Lewbel, Arthur & Linton, Oliver & Srisuma, Sorawoot, 2021. "Nonparametric Euler Equation Identification And Estimation," Econometric Theory, Cambridge University Press, vol. 37(5), pages 851-891, October.
    2. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    3. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    4. Botosaru, Irene, 2023. "Time-varying unobserved heterogeneity in earnings shocks," Journal of Econometrics, Elsevier, vol. 235(2), pages 1378-1393.
    5. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    6. Andrii Babii & Jean-Pierre Florens, 2017. "Is completeness necessary? Estimation in nonidentified linear models," Papers 1709.03473, arXiv.org, revised Nov 2021.
    7. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    8. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    9. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    10. repec:hum:wpaper:sfb649dp2015-050 is not listed on IDEAS
    11. Juan Carlos Escanciano & Wei Li, 2013. "On the identification of structural linear functionals," CeMMAP working papers CWP48/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. De Nadai, Michele & Lewbel, Arthur, 2016. "Nonparametric errors in variables models with measurement errors on both sides of the equation," Journal of Econometrics, Elsevier, vol. 191(1), pages 19-32.
    13. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    14. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
    15. Nail Kashaev & Bruno Salcedo, 2019. "Discerning Solution Concepts," University of Western Ontario, Departmental Research Report Series 20193, University of Western Ontario, Department of Economics.
    16. Gaurab Aryal & Federico Zincenko, 2014. "Identification and Estimation of Multidimensional Screening," Papers 1411.6250, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    2. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    3. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    4. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    5. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    6. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    7. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    8. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    9. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    10. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    11. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    12. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    13. Dunker, Fabian & Florens, Jean-Pierre & Hohage, Thorsten & Johannes, Jan & Mammen, Enno, 2014. "Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 178(P3), pages 444-455.
    14. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    15. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.
    16. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    17. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    18. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    19. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    20. Fabian Dunker, 2015. "Adaptive estimation for some nonparametric instrumental variable models," Papers 1511.03977, arXiv.org, revised Aug 2021.

    More about this item

    Keywords

    Nonlinear random coefficients; mixture models; structural models; heterogeneity; inverse problems;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.