IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i4p68-1094d1259033.html
   My bibliography  Save this article

Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data

Author

Listed:
  • Áurea Sousa

    (Faculty of Sciences and Technology, CEEAplA and OSEAN, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal)

  • Osvaldo Silva

    (Faculty of Sciences and Technology, CICSNOVA.UAc, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal)

  • Leonor Bacelar-Nicolau

    (Faculty of Medicine, Institute of Preventive Medicine and Public Health & ISAMB/FM-UL, Universidade de Lisboa, 1649-028 Lisboa, Portugal)

  • João Cabral

    (Faculty of Sciences and Technology, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
    CIMA-Research Centre, Mathematics and Applications & Azores University, 9500-321 Ponta Delgada, Portugal)

  • Helena Bacelar-Nicolau

    (Faculty of Psychology, Institute of Environmental Health (ISAMB/FM-UL), Universidade de Lisboa, 1649-013 Lisboa, Portugal)

Abstract

From the affinity coefficient between two discrete probability distributions proposed by Matusita, Bacelar-Nicolau introduced the affinity coefficient in a cluster analysis context and extended it to different types of data, including for the case of complex and heterogeneous data within the scope of symbolic data analysis (SDA). In this study, we refer to the most significant partitions obtained using the hierarchical cluster analysis (h.c.a.) of two well-known datasets that were taken from the literature on complex (symbolic) data analysis. h.c.a. is based on the weighted generalized affinity coefficient for the case of interval data and on probabilistic aggregation criteria from a VL parametric family. To calculate the values of this coefficient, two alternative algorithms were used and compared. Both algorithms were able to detect clusters of macrodata (aggregated data into groups of interest) that were consistent and consonant with those reported in the literature, but one performed better than the other in some specific cases. Moreover, both approaches allow for the treatment of large microdatabases (non-aggregated data) after their transformation into macrodata from the huge microdata.

Suggested Citation

  • Áurea Sousa & Osvaldo Silva & Leonor Bacelar-Nicolau & João Cabral & Helena Bacelar-Nicolau, 2023. "Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data," Stats, MDPI, vol. 6(4), pages 1-13, October.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:68-1094:d:1259033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/4/68/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/4/68/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco Carvalho & Paula Brito & Hans-Hermann Bock, 2006. "Dynamic clustering for interval data based on L 2 distance," Computational Statistics, Springer, vol. 21(2), pages 231-250, June.
    2. Marie Chavent & Francisco Carvalho & Yves Lechevallier & Rosanna Verde, 2006. "New clustering methods for interval data," Computational Statistics, Springer, vol. 21(2), pages 211-229, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    2. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    3. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    4. Andrzej Młodak, 2014. "On the construction of an aggregated measure of the development of interval data," Computational Statistics, Springer, vol. 29(5), pages 895-929, October.
    5. Andrzej Młodak, 2011. "Classification of Multivariate Objects Using Interval Quantile Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 327-362, October.
    6. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    7. Nataša Kejžar & Simona Korenjak-Černe & Vladimir Batagelj, 2021. "Clustering of modal-valued symbolic data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 513-541, June.
    8. Guo, Junpeng & Li, Wenhua & Li, Chenhua & Gao, Sa, 2012. "Standardization of interval symbolic data based on the empirical descriptive statistics," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 602-610.
    9. Angela Blanco-Fernández & Peter Winker, 2016. "Data generation processes and statistical management of interval data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 475-494, October.
    10. M. Rosário Oliveira & Margarida Azeitona & António Pacheco & Rui Valadas, 2022. "Association measures for interval variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 491-520, September.
    11. Ana Belén Ramos-Guajardo, 2022. "A hierarchical clustering method for random intervals based on a similarity measure," Computational Statistics, Springer, vol. 37(1), pages 229-261, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:68-1094:d:1259033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.