IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i2d10.1007_s10287-024-00526-x.html
   My bibliography  Save this article

Optimal liquidation policies of redeemable shares

Author

Listed:
  • Anna Battauz

    (Baffi and IGIER, Bocconi University Milan)

  • Francesco Rotondi

    (Bocconi University)

Abstract

In this paper we explore the optimal issuance and liquidation of redeemable shares. Redeemable shares are those that the issuer can repurchase, or redeem, at a predetermined price, known as the call price, as soon as a given barrier event is triggered. We first determine the optimal call price for the issuer by stating and solving a stylized earning per share maximization problem from the point of view of a company. Once the call price is determined, we focus on the valuation of both perpetual and finite-maturity redeemable shares and we examine the problem of their optimal liquidation from the point of view of a shareholder holding them. Along with the few closed-form results that can be obtained in a lognormal continuous-time framework, we propose an intuitive and flexible method to retrieve the optimal liquidation policy in the form of a liquidation boundary, thanks to a parsimonious Markovianization of the evaluation problem in a binomial framework. Numerical tests using alternative market models and different dividend formulations confirm the robustness of our results.

Suggested Citation

  • Anna Battauz & Francesco Rotondi, 2024. "Optimal liquidation policies of redeemable shares," Computational Management Science, Springer, vol. 21(2), pages 1-32, December.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:2:d:10.1007_s10287-024-00526-x
    DOI: 10.1007/s10287-024-00526-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-024-00526-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-024-00526-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yagi, Kyoko & Sawaki, Katsushige, 2010. "The pricing and optimal strategies of callable warrants," European Journal of Operational Research, Elsevier, vol. 206(1), pages 123-130, October.
    2. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    3. Andrew Ming-Long Wang & Yu-Hong Liu & Yi-Long Hsiao, 2009. "Barrier option pricing: a hybrid method approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 341-352.
    4. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    7. Battauz, A. & Pratelli, M., 2004. "Optimal stopping and American options with discrete dividends and exogenous risk," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 255-265, October.
    8. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    11. Jerome Detemple & Yerkin Kitapbayev, 2021. "Callable barrier reverse convertible securities," Quantitative Finance, Taylor & Francis Journals, vol. 21(9), pages 1519-1532, September.
    12. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    13. Maurizio Pratelli & Sabrina Mulinacci, 1998. "Functional convergence of Snell envelopes: Applications to American options approximations," Finance and Stochastics, Springer, vol. 2(3), pages 311-327.
    14. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    15. John Core & Wayne Guay, 2002. "Estimating the Value of Employee Stock Option Portfolios and Their Sensitivities to Price and Volatility," Journal of Accounting Research, Wiley Blackwell, vol. 40(3), pages 613-630, June.
    16. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    17. Alfred Rappaport, 2005. "The Economics of Short-Term Performance Obsession," Financial Analysts Journal, Taylor & Francis Journals, vol. 61(3), pages 65-79, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Zhang, Hongyu & Guo, Xunxiang & Wang, Ke & Huang, Shoude, 2024. "The valuation of American options with the stochastic liquidity risk and jump risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    5. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    6. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    9. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    11. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    12. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    13. Scott B. Laprise & Michael C. Fu & Steven I. Marcus & Andrew E. B. Lim & Huiju Zhang, 2006. "Pricing American-Style Derivatives with European Call Options," Management Science, INFORMS, vol. 52(1), pages 95-110, January.
    14. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    15. Antonella Basso & Martina Nardon & Paolo Pianca, 2004. "A two-step simulation procedure to analyze the exercise features of American options," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(1), pages 35-56, August.
    16. Xiaotong Lian & Yingda Song, 2021. "Pricing and calibration of the futures options market: A unified approximation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1074-1091, July.
    17. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    18. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    19. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    20. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:2:d:10.1007_s10287-024-00526-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.