IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v41y2021i7p1074-1091.html
   My bibliography  Save this article

Pricing and calibration of the futures options market: A unified approximation

Author

Listed:
  • Xiaotong Lian
  • Yingda Song

Abstract

The constant elasticity of variance (CEV) model is widely used in modeling commodity futures prices, but it may not perform well in calibrating corresponding futures options. We consider two variations of the CEV model, that is, CEV with jumps and CEV with regime switching, and compare their performance in calibrating the Chinese futures options market. In particular, we propose a unified framework for pricing American futures options by combining the continuous‐time Markov chain approximation and the dynamic programming method. Results show that the inverse leverage effect in the soybean meal options market can be better described by the CEV regime‐switching model.

Suggested Citation

  • Xiaotong Lian & Yingda Song, 2021. "Pricing and calibration of the futures options market: A unified approximation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1074-1091, July.
  • Handle: RePEc:wly:jfutmk:v:41:y:2021:i:7:p:1074-1091
    DOI: 10.1002/fut.22206
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22206
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Draviam, Thangaraj, 2007. "Pricing exotic options under regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 267-282, March.
    2. Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
    3. David D. Yao & Qing Zhang & Xun Yu Zhou, 2006. "A Regime-Switching Model for European Options," International Series in Operations Research & Management Science, in: Houmin Yan & George Yin & Qing Zhang (ed.), Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, chapter 0, pages 281-300, Springer.
    4. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    7. Na Li & Alan Ker & Abdoul G. Sam & Satheesh Aradhyula, 2017. "Modeling regime-dependent agricultural commodity price volatilities," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 683-691, November.
    8. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    11. Carter Andrew V. & Steigerwald Douglas G., 2013. "Markov Regime-Switching Tests: Asymptotic Critical Values," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 25-34, July.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    13. José Carlos Dias & João Pedro Vidal Nunes, 2011. "Pricing real options under the constant elasticity of variance diffusion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 230-250, March.
    14. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    15. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    16. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Ross A. Maller & David H. Solomon & Alex Szimayer, 2006. "A Multinomial Approximation For American Option Prices In Lévy Process Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 613-633, October.
    19. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    20. Jin Seo Cho & Halbert White, 2007. "Testing for Regime Switching," Econometrica, Econometric Society, vol. 75(6), pages 1671-1720, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    2. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    3. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    4. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    5. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    7. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    10. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    11. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    12. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    13. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    14. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    15. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    16. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    17. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    18. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    19. Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
    20. Kourouvakalis, Stylianos, 2008. "Méthodes numériques pour la valorisation d'options swings et autres problèmes sur les matières premières," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/116 edited by Geman, Hélyette.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:41:y:2021:i:7:p:1074-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.