IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-023-00482-y.html
   My bibliography  Save this article

Emergency exit layout planning using optimization and agent-based simulation

Author

Listed:
  • Maren S. Barth

    (Norwegian University of Science and Technology)

  • Katharina Palm

    (Norwegian University of Science and Technology)

  • Henrik Andersson

    (Norwegian University of Science and Technology)

  • Tobias A. Granberg

    (Linköping University)

  • Anders N. Gullhav

    (Norwegian University of Science and Technology)

  • Andreas Krüger

    (Norwegian University of Science and Technology)

Abstract

Evacuation preparedness includes ensuring proper infrastructure, resources and planning for moving people from a dangerous area to safety. This is especially important and challenging during mass gatherings, such as large concerts. In this paper, we present the Emergency Exit Layout Problem (EELP) which is the problem of locating a given number of emergency exits and deciding their width such that the time it takes to evacuate the crowd from an arena is minimized. The EELP takes into account the geography of the arena and its surroundings, as well as the number of pedestrians in the crowd and the distribution of these within the arena. The EELP is formulated as a two-stage stochastic mixed integer linear program to handle the uncertainty related to the location of the possible incidents and the distribution of the pedestrians. Two cases are studied, a large concert planned at the Leangen trotting track in Trondheim and a smaller indoor arena. For each case, the EELP is solved for different scenarios, and the suggested layouts are evaluated using an agent-based simulation model. In particular, the potential of incorporating detailed assessment regarding the location and probability of specific incidents and the distribution of pedestrians are investigated. The computational study shows that making a more detailed risk assessment has little effect on the large concert, but a significant impact on the location of the emergency exits for the smaller indoor case. The results also indicate that it is more important to consider the location and probability of specific incidents rather than the pedestrian distribution.

Suggested Citation

  • Maren S. Barth & Katharina Palm & Henrik Andersson & Tobias A. Granberg & Anders N. Gullhav & Andreas Krüger, 2024. "Emergency exit layout planning using optimization and agent-based simulation," Computational Management Science, Springer, vol. 21(1), pages 1-25, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00482-y
    DOI: 10.1007/s10287-023-00482-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00482-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00482-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Monks & Christine S. M. Currie & Bhakti Stephan Onggo & Stewart Robinson & Martin Kunc & Simon J. E. Taylor, 2019. "Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines," Journal of Simulation, Taylor & Francis Journals, vol. 13(1), pages 55-67, January.
    2. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.
    3. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Şahin, Coşkun & Rokne, Jon & Alhajj, Reda, 2019. "Human behavior modeling for simulating evacuation of buildings during emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    5. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    6. Shokri Z. Selim & Ala H. Al-Rabeh, 1991. "On the Modeling of Pedestrian Flow on the Jamarat Bridge," Transportation Science, INFORMS, vol. 25(4), pages 257-263, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Wang, Fei & Yuan, Yu & Lu, Liangdong, 2021. "Dynamical prediction model of consumers’ purchase intentions regarding anti-smog products during smog risk: Taking the information flow perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Xuefeng Zhao & Lingli Huang & Zhe Sun & Xiongtao Fan & Meng Zhang, 2023. "Design Optimization of Building Exit Locations Based on Building Information Model and Ontology," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    5. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    6. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    7. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    8. Kurdi, Heba & Almulifi, Asma & Al-Megren, Shiroq & Youcef-Toumi, Kamal, 2021. "A balanced evacuation algorithm for facilities with multiple exits," European Journal of Operational Research, Elsevier, vol. 289(1), pages 285-296.
    9. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    10. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    11. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    12. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    13. Tan, Bangkun & Xuan, Chenrui & Xie, Wei & Shi, Meng & Ma, Yi, 2024. "Dynamic characteristics of the sideways movement of pedestrians: An experimental study based on single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    14. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    15. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    16. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    17. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    18. Liao, Weichen & Tordeux, Antoine & Seyfried, Armin & Chraibi, Mohcine & Drzycimski, Kevin & Zheng, Xiaoping & Zhao, Ying, 2016. "Measuring the steady state of pedestrian flow in bottleneck experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 248-261.
    19. Yi, Ruolong & Du, Mingyu & Song, Weiguo & Zhang, Jun, 2024. "Fast trajectory extraction and pedestrian dynamics analysis using deep neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    20. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00482-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.