IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v528y2019ics0378437119308362.html
   My bibliography  Save this article

Human behavior modeling for simulating evacuation of buildings during emergencies

Author

Listed:
  • Şahin, Coşkun
  • Rokne, Jon
  • Alhajj, Reda

Abstract

Every year, a considerably large number of disasters occur as a result of natural events or human faults. In order to decrease the damage and casualties associated with each disaster, it is crucial to get prepared for these kind of situations. Indeed, emergency evacuation is a crucial part of this preparation. Researchers have been working on creating evacuation simulation systems over the past few decades. They are trying to model the environment, human physiology and psychology as realistic as possible to make the analysis more accurate. However, there is yet no comprehensive system which well cover the emerging situations and guarantees the avoidance of causalities, environmental and economic damage. In this paper, we propose an approach which combines a multi-agent model with fuzzy logic to smoothly and successfully handle multiple features of each individual to simulate common human and group behavior during safety egress. The developed simulation system considers situations where a crowd is blocked inside a building or a zone during a disaster. Agents capture various aspects related to humans who may be present in such a region. Each agent possesses different features to realistically simulate a human by encapsulating the psychology, sociology, mood, reaction, etc. Integrating fuzziness in the model allows for more natural capturing of human behavior during the evacuation process. Different scenarios have been tried in the conducted experiments. The outcome revealed the importance of various characteristics of the zone to be evacuated and how they could positively affect the safeness of the evacuation plans. For instance, increasing the width of an exit up to a certain limit may be very beneficial in the process based on the density of the crowd to be evacuated. Actually, the reported simulation results demonstrate the applicability and effectiveness of the proposed approach.

Suggested Citation

  • Şahin, Coşkun & Rokne, Jon & Alhajj, Reda, 2019. "Human behavior modeling for simulating evacuation of buildings during emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
  • Handle: RePEc:eee:phsmap:v:528:y:2019:i:c:s0378437119308362
    DOI: 10.1016/j.physa.2019.121432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119308362
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fei & Yuan, Yu & Lu, Liangdong, 2021. "Dynamical prediction model of consumers’ purchase intentions regarding anti-smog products during smog risk: Taking the information flow perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Shao, Quan & Yuan, Jia, 2022. "Study on the disposal strategy of civil aviation passenger collective events based on evolutionary game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. A, Sheeba Angel & R, Jayaparvathy, 2024. "Modeling of emergency evacuation in high rise buildings considering congestion at stairs based on Markov chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Maren S. Barth & Katharina Palm & Henrik Andersson & Tobias A. Granberg & Anders N. Gullhav & Andreas Krüger, 2024. "Emergency exit layout planning using optimization and agent-based simulation," Computational Management Science, Springer, vol. 21(1), pages 1-25, June.
    5. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:528:y:2019:i:c:s0378437119308362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.