IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1610.03086.html
   My bibliography  Save this paper

Option pricing with Legendre polynomials

Author

Listed:
  • Julien Hok
  • Tat Lung Chan

Abstract

Here we develop an option pricing method based on Legendre series expansion of the density function. The key insight, relying on the close relation of the characteristic function with the series coefficients, allows to recover the density function rapidly and accurately. Based on this representation for the density function, approximations formulas for pricing European type options are derived. To obtain highly accurate result for European call option, the implementation involves integrating high degree Legendre polynomials against exponential function. Some numerical instabilities arise because of serious subtractive cancellations in its formulation (96) in proposition 7.1. To overcome this difficulty, we rewrite this quantity as solution of a second-order linear difference equation and solve it using a robust and stable algorithm from Olver. Derivation of the pricing method has been accompanied by an error analysis. Errors bounds have been derived and the study relies more on smoothness properties which are not provided by the payoff? functions, but rather by the density function of the underlying stochastic models. This is particularly relevant for options pricing where the payoff of the contract are generally not smooth functions. The numerical experiments on a class of models widely used in quantitative finance show exponential convergence.

Suggested Citation

  • Julien Hok & Tat Lung Chan, 2016. "Option pricing with Legendre polynomials," Papers 1610.03086, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1610.03086
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1610.03086
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Ricardo Crisóstomo, 2014. "An analisys of the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab," CNMV Working Papers CNMV Working Papers no 58, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    3. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    6. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    7. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    10. Andricopoulos, Ari D. & Widdicks, Martin & Duck, Peter W. & Newton, David P., 2003. "Universal option valuation using quadrature methods," Journal of Financial Economics, Elsevier, vol. 67(3), pages 447-471, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Frutos & Víctor Gatón, 2017. "Chebyshev reduced basis function applied to option valuation," Computational Management Science, Springer, vol. 14(4), pages 465-491, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    2. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    3. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    4. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    5. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    6. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    7. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    8. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    9. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    12. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
    13. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    14. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. Anastasia Borovykh & Cornelis W. Oosterlee & Andrea Pascucci, 2016. "Pricing Bermudan options under local L\'evy models with default," Papers 1604.08735, arXiv.org.
    16. Christara, Christina C. & Leung, Nat Chun-Ho, 2016. "Option pricing in jump diffusion models with quadratic spline collocation," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 28-42.
    17. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    18. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    19. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    20. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1610.03086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.