SDDP for multistage stochastic programs: preprocessing via scenario reduction
Author
Abstract
Suggested Citation
DOI: 10.1007/s10287-016-0261-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nils Löhndorf & David Wozabal & Stefan Minner, 2013. "Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual Dynamic Programming," Operations Research, INFORMS, vol. 61(4), pages 810-823, August.
- Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
- David Wozabal, 2012. "A framework for optimization under ambiguity," Annals of Operations Research, Springer, vol. 193(1), pages 21-47, March.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
- Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
- Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
- Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
- Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
- Larissa de Oliveira Resende & Davi Valladão & Bernardo Vieira Bezerra & Yasmin Monteiro Cyrillo, 2021. "Assessing the value of natural gas underground storage in the Brazilian system via stochastic dual dynamic programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 106-124, April.
- Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
- Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
- Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
- Luckny Zéphyr & C. Lindsay Anderson, 2018. "Stochastic dynamic programming approach to managing power system uncertainty with distributed storage," Computational Management Science, Springer, vol. 15(1), pages 87-110, January.
- D. Ávila & A. Papavasiliou & N. Löhndorf, 2022. "Parallel and distributed computing for stochastic dual dynamic programming," Computational Management Science, Springer, vol. 19(2), pages 199-226, June.
- de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
- Vitor Matos & Mauro Sierra & Erlon Finardi & Brigida Decker & André Milanezi, 2015. "Stochastic model for energy commercialisation of small hydro plants in the Brazilian energy market," Computational Management Science, Springer, vol. 12(1), pages 111-127, January.
- Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
- A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
- Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
- Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
- Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
- Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
- Daniel F. Salas & Warren B. Powell, 2018. "Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 106-123, February.
- Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
- Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
More about this item
Keywords
Multistage stochastic programs; Stochastic dual dynamic programming; Multiperiod CVaR; Scenario reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:14:y:2017:i:1:d:10.1007_s10287-016-0261-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.