IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v23y2017i3d10.1007_s10588-016-9235-z.html
   My bibliography  Save this article

Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations

Author

Listed:
  • Stefania Monica

    (Università degli Studi di Parma)

  • Federico Bergenti

    (Università degli Studi di Parma)

Abstract

In this paper opinion dynamics in multi-agent systems is investigated analytically using a kinetic approach. Interactions among agents are interpreted as collisions among molecules in gases and opinion dynamics is described according to the Boltzmann equation. Starting from a microscopic description of single interactions, global properties of the opinion distribution are derived analytically. The proposed analytic model is general enough to allow reproducing features of real societies of agents, such as positive and negative influences and bounded confidence, which are typically used to study opinion distribution models. Analytic results relative to emergent and global characteristics of considered multi-agent systems are verified by simulations obtained via direct implementation of the proposed microscopic interactions rules. Simulations confirm analytic results.

Suggested Citation

  • Stefania Monica & Federico Bergenti, 2017. "Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 423-450, September.
  • Handle: RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9235-z
    DOI: 10.1007/s10588-016-9235-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-016-9235-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-016-9235-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Federico Bergenti & Enrico Franchi & Agostino Poggi, 2013. "Agent-based interpretations of classic network models," Computational and Mathematical Organization Theory, Springer, vol. 19(2), pages 105-127, June.
    3. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Khalil, Nagi, 2021. "Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    5. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    6. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    7. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    8. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    9. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    10. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    11. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    12. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    13. Saggau, Volker, 2012. "Viele Köche Verderben Den Brei – Agentenbasierte Simulationen Zum Föderalismusdurcheinander Während Der Ehec-Krise," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 133052, German Association of Agricultural Economists (GEWISOLA).
    14. Hannah Ãœbler & Stephan Hartmann, 2016. "Simulating Trends in Artificial Influence Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-2.
    15. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
    16. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    17. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    18. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    19. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    20. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9235-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.