IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v15y2009i3d10.1007_s10588-008-9030-6.html
   My bibliography  Save this article

Why organizational networks in reality do not show scale-free distributions

Author

Listed:
  • Peng-Xiang Li

    (Xi’an Jiaotong University)

  • Meng-Wu Zhang

    (Xi’an University of Technology)

  • You-Min Xi

    (Xi’an Jiaotong University)

  • Wen-Tian Cui

    (Xi’an Jiaotong University)

Abstract

This paper discusses chain of command networks that are most likely to exhibit the scale-free (SF) property in organizational networks, explaining why organizational networks do not show SF distributions. We propose an evolving hierarchical tree network model without explicit preferential attachment. The model simulates several kinds of chain of command networks with the span of control ranging from extreme homogeneity to extreme heterogeneity. In addition to traditional degree distribution, a new kind of cumulative-outdegree distribution p(K cum =k cum ) is introduced and discussed that gives a probability that a randomly selected node has exactly k cum children nodes. Theoretical analysis and simulation results show that even if the network size is large enough to meet the demand of large-scale networks, the SF property can emerge only when a hierarchical tree lies in two extreme situations: (1) the exact same span of control exists at all levels of an organization; (2) the node outdegree (i.e. span of control) distribution obeys a power-law distribution. The empirical investigations show that real organization networks are between the two extreme situations. This is why organizational networks in reality do not show an SF degree distribution or SF cumulative-outdegree distribution. This finding shows that the SF property is the consequence of extreme situations, even though it is very common in nature and in society. In fact, the SF property is of no value in the study of problems in organizations.

Suggested Citation

  • Peng-Xiang Li & Meng-Wu Zhang & You-Min Xi & Wen-Tian Cui, 2009. "Why organizational networks in reality do not show scale-free distributions," Computational and Mathematical Organization Theory, Springer, vol. 15(3), pages 169-190, September.
  • Handle: RePEc:spr:comaot:v:15:y:2009:i:3:d:10.1007_s10588-008-9030-6
    DOI: 10.1007/s10588-008-9030-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-008-9030-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-008-9030-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Bo & Jiang, Xin-Yu & Ding, Jun-Feng & Xie, Yan-Bo & Wang, Bing-Hong, 2005. "A weighted network model for interpersonal relationship evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 576-594.
    2. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    3. Luis A. Nunes Amaral & Brian Uzzi, 2007. "Complex Systems--A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems," Management Science, INFORMS, vol. 53(7), pages 1033-1035, July.
    4. Han, Xiao-Pu & Xie, Yan-Bo, 2007. "Time-cumulative scale-free networks without both growth and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 525-531.
    5. Youmin Xi & Fangcheng Tang, 2004. "Multiplex Multi-Core Pattern of Network Organizations: An Exploratory Study," Computational and Mathematical Organization Theory, Springer, vol. 10(2), pages 179-195, July.
    6. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    7. Souma, Wataru & Fujiwara, Yoshi & Aoyama, Hideaki, 2003. "Complex networks and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 396-401.
    8. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    9. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tao & Shao, Zhi-Gang, 2012. "Power-law accelerating growth complex networks with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2778-2787.
    2. Luka Kronegger & Anuška Ferligoj & Patrick Doreian, 2011. "On the dynamics of national scientific systems," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(5), pages 989-1015, August.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    5. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    6. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    7. J. Esquivel-Gómez & R. E. Balderas-Navarro & P. D. Arjona-Villicaña & P. Castillo-Castillo & O. Rico-Trejo & J. Acosta-Elias, 2017. "On the Emergence of Islands in Complex Networks," Complexity, Hindawi, vol. 2017, pages 1-10, January.
    8. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    9. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    10. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    11. Rendón de la Torre, Stephanie & Kalda, Jaan & Kitt, Robert & Engelbrecht, Jüri, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 18-27.
    12. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    13. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    14. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    15. Massimiliano Ferrara & Roberto Mavilia & Bruno Antonio Pansera, 2017. "Extracting knowledge patterns with a social network analysis approach: an alternative methodology for assessing the impact of power inventors," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1593-1625, December.
    16. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    17. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    18. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    19. S Konini & E J Janse van Rensburg, 2017. "Mean field analysis of algorithms for scale-free networks in molecular biology," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-34, December.
    20. Qiao, Jian & Meng, Ying-Ying & Chen, Hsinchun & Huang, Hong-Qiao & Li, Guo-Ying, 2016. "Modeling one-mode projection of bipartite networks by tagging vertex information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 270-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:15:y:2009:i:3:d:10.1007_s10588-008-9030-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.