Internal variability of Arctic liquid freshwater content in a coupled climate model large ensemble
Author
Abstract
Suggested Citation
DOI: 10.1007/s10584-024-03808-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- James Morison & Ron Kwok & Cecilia Peralta-Ferriz & Matt Alkire & Ignatius Rigor & Roger Andersen & Mike Steele, 2012. "Changing Arctic Ocean freshwater pathways," Nature, Nature, vol. 481(7379), pages 66-70, January.
- R. Bintanja & F. M. Selten, 2014. "Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat," Nature, Nature, vol. 509(7501), pages 479-482, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrew Kliskey & Paula Williams & John T. Abatzoglou & Lilian Alessa & Richard B. Lammers, 2019. "Enhancing a community-based water resource tool for assessing environmental change: the arctic water resources vulnerability index revisited," Environment Systems and Decisions, Springer, vol. 39(2), pages 183-197, June.
- Jordi Cristóbal & Patrick Graham & Marcel Buchhorn & Anupma Prakash, 2016. "A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions," Data, MDPI, vol. 1(2), pages 1-9, September.
- R. Macdonald & Z. Kuzyk & S. Johannessen, 2015. "It is not just about the ice: a geochemical perspective on the changing Arctic Ocean," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 288-301, September.
- Chun-Chao Kuo & Kai Ernn Gan & Yang Yang & Thian Yew Gan, 2021. "Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy," Climatic Change, Springer, vol. 168(3), pages 1-23, October.
- Chelsea L. Parker & Priscilla A. Mooney & Melinda A. Webster & Linette N. Boisvert, 2022. "The influence of recent and future climate change on spring Arctic cyclones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Anne Gädeke & Valentina Krysanova & Aashutosh Aryal & Jinfeng Chang & Manolis Grillakis & Naota Hanasaki & Aristeidis Koutroulis & Yadu Pokhrel & Yusuke Satoh & Sibyll Schaphoff & Hannes Müller Schmie, 2020. "Performance evaluation of global hydrological models in six large Pan-Arctic watersheds," Climatic Change, Springer, vol. 163(3), pages 1329-1351, December.
- Zhibiao Wang & Qinghua Ding & Renguang Wu & Thomas J. Ballinger & Bin Guan & Deniz Bozkurt & Deanna Nash & Ian Baxter & Dániel Topál & Zhe Li & Gang Huang & Wen Chen & Shangfeng Chen & Xi Cao & Zhang , 2024. "Role of atmospheric rivers in shaping long term Arctic moisture variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Xuan Shan & Shantong Sun & Lixin Wu & Michael Spall, 2024. "Role of the Labrador Current in the Atlantic Meridional Overturning Circulation response to greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Jakob Abermann & Markus Eckerstorfer & Eirik Malnes & Birger Ulf Hansen, 2019. "A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 517-534, June.
More about this item
Keywords
Arctic freshwater content; Internal variability; Sea level pressure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:10:d:10.1007_s10584-024-03808-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.