IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v1y2016i2p13-d78602.html
   My bibliography  Save this article

A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions

Author

Listed:
  • Jordi Cristóbal

    (HyLab, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA
    Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Patrick Graham

    (HyLab, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA)

  • Marcel Buchhorn

    (HyLab, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA
    Flemish Institute for Technological Research (VITO), Remote Sensing Unit, Boeretang 200, Mol B-2400, Belgium)

  • Anupma Prakash

    (HyLab, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA)

Abstract

Alaska’s Arctic and boreal regions, largely dominated by tundra and boreal forest, are witnessing unprecedented changes in response to climate warming. However, the intensity of feedbacks between the hydrosphere and vegetation changes are not yet well quantified in Arctic regions. This lends considerable uncertainty to the prediction of how much, how fast, and where Arctic and boreal hydrology and ecology will change. With a very sparse network of observations (meteorological, flux towers, etc.) in the Alaskan Arctic and boreal regions, remote sensing is the only technology capable of providing the necessary quantitative measurements of land–atmosphere exchanges of water and energy at regional scales in an economically feasible way. Over the last decades, the University of Alaska Fairbanks (UAF) has become the research hub for high-latitude research. UAF’s newly-established Hyperspectral Imaging Laboratory (HyLab) currently provides multiplatform data acquisition, processing, and analysis capabilities spanning microscale laboratory measurements to macroscale analysis of satellite imagery. The specific emphasis is on acquiring and processing satellite and airborne thermal imagery, one of the most important sources of input data in models for the derivation of surface energy fluxes. In this work, we present a synergistic modeling framework that combines multiplatform remote sensing data and calibration/validation (CAL/VAL) activities for the retrieval of land surface temperature (LST). The LST Arctic Dataset will contribute to ecological modeling efforts to help unravel seasonal and spatio-temporal variability in land surface processes and vegetation biophysical properties in Alaska’s Arctic and boreal regions. This dataset will be expanded to other Alaskan Arctic regions, and is expected to have more than 500 images spanning from 1984 to 2012.

Suggested Citation

  • Jordi Cristóbal & Patrick Graham & Marcel Buchhorn & Anupma Prakash, 2016. "A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions," Data, MDPI, vol. 1(2), pages 1-9, September.
  • Handle: RePEc:gam:jdataj:v:1:y:2016:i:2:p:13-:d:78602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/1/2/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/1/2/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonia Hachem & Michel Allard & Claude Duguay, 2009. "Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(4), pages 407-416, October.
    2. T. E. Osterkamp & M. T. Jorgenson & E. A. G. Schuur & Y. L. Shur & M. Z. Kanevskiy & J. G. Vogel & V. E. Tumskoy, 2009. "Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(3), pages 235-256, July.
    3. R. Bintanja & F. M. Selten, 2014. "Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat," Nature, Nature, vol. 509(7501), pages 479-482, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Kliskey & Paula Williams & John T. Abatzoglou & Lilian Alessa & Richard B. Lammers, 2019. "Enhancing a community-based water resource tool for assessing environmental change: the arctic water resources vulnerability index revisited," Environment Systems and Decisions, Springer, vol. 39(2), pages 183-197, June.
    2. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    3. E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
    4. Lingxiao Wang & Lin Zhao & Huayun Zhou & Shibo Liu & Guojie Hu & Zhibin Li & Chong Wang & Jianting Zhao, 2023. "Evidence of ground ice melting detected by InSAR and in situ monitoring over permafrost terrain on the Qinghai‐Xizang (Tibet) Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(1), pages 52-67, January.
    5. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Arvind Chandra Pandey & Tirthankar Ghosh & Bikash Ranjan Parida & Chandra Shekhar Dwivedi & Reet Kamal Tiwari, 2022. "Modeling Permafrost Distribution Using Geoinformatics in the Alaknanda Valley, Uttarakhand, India," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    7. R. Macdonald & Z. Kuzyk & S. Johannessen, 2015. "It is not just about the ice: a geochemical perspective on the changing Arctic Ocean," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 288-301, September.
    8. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
    10. Chun-Chao Kuo & Kai Ernn Gan & Yang Yang & Thian Yew Gan, 2021. "Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy," Climatic Change, Springer, vol. 168(3), pages 1-23, October.
    11. Chelsea L. Parker & Priscilla A. Mooney & Melinda A. Webster & Linette N. Boisvert, 2022. "The influence of recent and future climate change on spring Arctic cyclones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Jakob Abermann & Markus Eckerstorfer & Eirik Malnes & Birger Ulf Hansen, 2019. "A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 517-534, June.
    13. Anne Morgenstern & Pier Paul Overduin & Frank Günther & Samuel Stettner & Justine Ramage & Lutz Schirrmeister & Mikhail N. Grigoriev & Guido Grosse, 2021. "Thermo‐erosional valleys in Siberian ice‐rich permafrost," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 59-75, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:1:y:2016:i:2:p:13-:d:78602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.