IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v172y2022i3d10.1007_s10584-022-03386-z.html
   My bibliography  Save this article

Inundation of depressional wetlands declines under a changing climate

Author

Listed:
  • David W. Londe

    (Oklahoma State University)

  • Daniel Dvorett

    (Oklahoma Conservation Commission)

  • Craig A. Davis

    (Oklahoma State University)

  • Scott R. Loss

    (Oklahoma State University)

  • Ellen P. Robertson

    (Oklahoma State University)

Abstract

Wetlands provide many important ecosystem functions and services worldwide and are hotspots of biological diversity. However, depressional wetlands are particularly vulnerable to effects of climate change due to the significant role that precipitation and surface runoff play in shaping their hydrology. In the Southern Great Plains of North America, climate projections predict more extreme storm events, higher temperatures, and severe droughts, which could threaten natural hydrological patterns of depressional wetlands in this region. Regional hydrological models that accurately predict water dynamics are critical for developing effective climate change adaptation strategies. We developed a model to predict wetland inundation status for depressional wetlands in the Pleistocene Sand Dunes Ecoregion of Oklahoma, USA, that evaluated effects of weather variables, wetland characteristics, and landscape-level variables. We then predicted numbers of inundated wetlands and frequency of wetland inundation under three climate change scenarios for the middle and end of the century (2036–2050 and 2084–2099, respectively). Total precipitation measured in the 2 months prior to an inundation event and average daily temperature were the most important variables predicting wetland inundation status, and land use and wetland characteristics explained relatively little variation in water dynamics. Projections of wetland inundation status indicate numbers of inundated wetlands will decrease in spring and summer by as much as 42% and 79%, respectively, by midcentury. Future inundation patterns during fall and winter were less clear but will likely be similar to current, highly variable conditions. These results suggest climate change may threaten persistence of wetlands during key seasonal periods when humans, plants, and wildlife depend on them for crucial resources and services.

Suggested Citation

  • David W. Londe & Daniel Dvorett & Craig A. Davis & Scott R. Loss & Ellen P. Robertson, 2022. "Inundation of depressional wetlands declines under a changing climate," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
  • Handle: RePEc:spr:climat:v:172:y:2022:i:3:d:10.1007_s10584-022-03386-z
    DOI: 10.1007/s10584-022-03386-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03386-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03386-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucy Burris & Susan Skagen, 2013. "Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940–2100," Climatic Change, Springer, vol. 117(1), pages 69-83, March.
    2. Andreas F. Prein & Roy M. Rasmussen & Kyoko Ikeda & Changhai Liu & Martyn P. Clark & Greg J. Holland, 2017. "The future intensification of hourly precipitation extremes," Nature Climate Change, Nature, vol. 7(1), pages 48-52, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanzhao Li & Xiang Qin & Zizhen Jin & Yushuo Liu, 2023. "Future Projection of Extreme Precipitation Indices over the Qilian Mountains under Global Warming," IJERPH, MDPI, vol. 20(6), pages 1-28, March.
    2. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    3. Ranjana Ray Chaudhuri & Prateek Sharma, 2020. "Addressing uncertainty in extreme rainfall intensity for semi-arid urban regions: case study of Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2307-2324, December.
    4. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
    5. Nathan Lothrop & Nicolas Lopez-Galvez & Robert A. Canales & Mary Kay O’Rourke & Stefano Guerra & Paloma Beamer, 2022. "Sampling Low Air Pollution Concentrations at a Neighborhood Scale in a Desert U.S. Metropolis with Volatile Weather Patterns," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    6. Choi, Eseul & DePaula, Guilherme & Kyveryga, Peter & Fey, Suzanne, 2024. "The Trade-off between Yield and Nitrogen Pollution under Excessive Rainfall: Evidence from On-farm Field Experiments in Iowa," ISU General Staff Papers 202402222018560000, Iowa State University, Department of Economics.
    7. Christian Unterberger, 2018. "How Flood Damages to Public Infrastructure Affect Municipal Budget Indicators," Economics of Disasters and Climate Change, Springer, vol. 2(1), pages 5-20, April.
    8. M. A. Ben Alaya & F. W. Zwiers & X. Zhang, 2020. "Probable maximum precipitation in a warming climate over North America in CanRCM4 and CRCM5," Climatic Change, Springer, vol. 158(3), pages 611-629, February.
    9. Dominik Traxl & Niklas Boers & Aljoscha Rheinwalt & Bodo Bookhagen, 2021. "The role of cyclonic activity in tropical temperature-rainfall scaling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. G. M. Filippelli & J. L. Freeman & J. Gibson & S. Jay & M. J. Moreno-Madriñán & I. Ogashawara & F. S. Rosenthal & Y. Wang & E. Wells, 2020. "Climate change impacts on human health at an actionable scale: a state-level assessment of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1985-2004, December.
    11. Lynn Conell‐Price & Carolyn Kousky & Howard Kunreuther, 2022. "Encouraging resiliency through autoenrollment in supplemental flood insurance coverage," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 1109-1137, December.
    12. Lei Gu & Jiabo Yin & Pierre Gentine & Hui-Min Wang & Louise J. Slater & Sylvia C. Sullivan & Jie Chen & Jakob Zscheischler & Shenglian Guo, 2023. "Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:172:y:2022:i:3:d:10.1007_s10584-022-03386-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.