IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v171y2022i1d10.1007_s10584-022-03341-y.html
   My bibliography  Save this article

Phenotypic responses in fish behaviour narrow as climate ramps up

Author

Listed:
  • Almendra Rodriguez-Dominguez

    (School of Biological Sciences and the Environment Institute, DX 650 418, The University of Adelaide)

  • Sean D. Connell

    (School of Biological Sciences and the Environment Institute, DX 650 418, The University of Adelaide)

  • Ericka O. C. Coni

    (School of Biological Sciences and the Environment Institute, DX 650 418, The University of Adelaide)

  • Minami Sasaki

    (School of Biological Sciences and the Environment Institute, DX 650 418, The University of Adelaide)

  • David J. Booth

    (School of Life Sciences, University of Technology Sydney)

  • Ivan Nagelkerken

    (School of Biological Sciences and the Environment Institute, DX 650 418, The University of Adelaide)

Abstract

Natural selection alters the distribution of phenotypes as animals adjust their behaviour and physiology to environmental change. We have little understanding of the magnitude and direction of environmental filtering of phenotypes, and therefore how species might adapt to future climate, as trait selection under future conditions is challenging to study. Here, we test whether climate stressors drive shifts in the frequency distribution of behavioural and physiological phenotypic traits (17 fish species) at natural analogues of climate change (CO2 vents and warming hotspots) and controlled laboratory analogues (mesocosms and aquaria). We discovered that fish from natural populations (4 out of 6 species) narrowed their phenotypic distribution towards behaviourally bolder individuals as oceans acidify, representing loss of shyer phenotypes. In contrast, ocean warming drove both a loss (2/11 species) and gain (2/11 species) of bolder phenotypes in natural and laboratory conditions. The phenotypic variance within populations was reduced at CO2 vents and warming hotspots compared to control conditions, but this pattern was absent from laboratory systems. Fishes that experienced bolder behaviour generally showed increased densities in the wild. Yet, phenotypic alterations did not affect body condition, as all 17 species generally maintained their physiological homeostasis (measured across 5 different traits). Boldness is a highly heritable trait that is related to both loss (increased mortality risk) and gain (increased growth, reproduction) of fitness. Hence, climate conditions that mediate the relative occurrence of shy and bold phenotypes may reshape the strength of species interactions and consequently alter fish population and community dynamics in a future ocean.

Suggested Citation

  • Almendra Rodriguez-Dominguez & Sean D. Connell & Ericka O. C. Coni & Minami Sasaki & David J. Booth & Ivan Nagelkerken, 2022. "Phenotypic responses in fish behaviour narrow as climate ramps up," Climatic Change, Springer, vol. 171(1), pages 1-18, March.
  • Handle: RePEc:spr:climat:v:171:y:2022:i:1:d:10.1007_s10584-022-03341-y
    DOI: 10.1007/s10584-022-03341-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03341-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03341-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvan U. Goldenberg & Ivan Nagelkerken & Emma Marangon & Angélique Bonnet & Camilo M. Ferreira & Sean D. Connell, 2018. "Ecological complexity buffers the impacts of future climate on marine consumers," Nature Climate Change, Nature, vol. 8(3), pages 229-233, March.
    2. Brian R. Smith & Daniel T. Blumstein, 2008. "Fitness consequences of personality: a meta-analysis," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(2), pages 448-455.
    3. Astrid C. Wittmann & Hans-O. Pörtner, 2013. "Sensitivities of extant animal taxa to ocean acidification," Nature Climate Change, Nature, vol. 3(11), pages 995-1001, November.
    4. Bob B.M. Wong & Ulrika Candolin, 2015. "Behavioral responses to changing environments," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(3), pages 665-673.
    5. Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
    6. Ken Caldeira & Michael E. Wickett, 2003. "Anthropogenic carbon and ocean pH," Nature, Nature, vol. 425(6956), pages 365-365, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Polverino & Upama Aich & Jack A Brand & Michael G Bertram & Jake M Martin & Hung Tan & Vrishin R Soman & Rachel T Mason & Bob B M Wong, 2023. "Sex-specific effects of psychoactive pollution on behavioral individuality and plasticity in fish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(6), pages 969-978.
    2. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    3. Weliton Menário & Wendy J King & Timothée Bonnet & Marco Festa-Bianchet & Loeske E B Kruuk, 2023. "Early-life behavior, survival, and maternal personality in a wild marsupial," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(6), pages 1002-1012.
    4. Bourret, A. & Martin, Y. & Troussellier, M., 2007. "Modelling the response of microbial food web to an increase of atmospheric CO2 partial pressure in a marine Mediterranean coastal ecosystem (Brusc Lagoon, France)," Ecological Modelling, Elsevier, vol. 208(2), pages 189-204.
    5. Teresa L. Dzieweczynski & Alyssa M. Russell & Lindsay M. Forrette & Krystal L. Mannion, 2014. "Male behavioral type affects female preference in Siamese fighting fish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(1), pages 136-141.
    6. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    7. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    8. Simen Alexander Linge Johnsen & Jörg Bollmann, 2020. "Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
    9. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    10. Long, X. & Ji, Xi & Ulgiati, S., 2017. "Is urbanization eco-friendly? An energy and land use cross-country analysis," Energy Policy, Elsevier, vol. 100(C), pages 387-396.
    11. Rau, Greg H. & Knauss, Kevin G. & Langer, William H. & Caldeira, Ken, 2007. "Reducing energy-related CO2 emissions using accelerated weathering of limestone," Energy, Elsevier, vol. 32(8), pages 1471-1477.
    12. László Kovács, 2019. "Applications of Metaheuristics in Insurance," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(3), pages 371-395, September.
    13. Martin Tremmel & Caroline Müller, 2013. "Insect personality depends on environmental conditions," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(2), pages 386-392.
    14. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    15. Verónica Lloréns-Rico & Ann C. Gregory & Johan Van Weyenbergh & Sander Jansen & Tina Van Buyten & Junbin Qian & Marcos Braz & Soraya Maria Menezes & Pierre Van Mol & Lore Vanderbeke & Christophe Dooms, 2021. "Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Joel Isabirye, 2021. "The Behavioral Theory of the Firm: Foundations, Tenets and Relevance," Technium Social Sciences Journal, Technium Science, vol. 19(1), pages 324-335, May.
    17. Nan Hu & Paul E. Bourdeau & Johan Hollander, 2024. "Responses of marine trophic levels to the combined effects of ocean acidification and warming," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Sarkki, Simo & Karjalainen, Timo P., 2015. "Ecosystem service valuation in a governance debate: Practitioners' strategic argumentation on forestry in northern Finland," Ecosystem Services, Elsevier, vol. 16(C), pages 13-22.
    20. Petri T. Niemelä & Niels J. Dingemanse & Nico Alioravainen & Anssi Vainikka & Raine Kortet, 2013. "Personality pace-of-life hypothesis: testing genetic associations among personality and life history," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(4), pages 935-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:171:y:2022:i:1:d:10.1007_s10584-022-03341-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.