IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i1d10.1007_s10584-021-03151-8.html
   My bibliography  Save this article

Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment

Author

Listed:
  • Sabine Homann-Kee Tui

    (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT))

  • Katrien Descheemaeker

    (Wageningen University)

  • Roberto O. Valdivia

    (Oregon State University)

  • Patricia Masikati

    (World Agroforestry (ICRAF))

  • Gevious Sisito

    (Matopos Research Institute)

  • Elisha N. Moyo

    (Department of Climate Change, Climate Change Management Dept., Ministry of Environment, Water and Climate)

  • Olivier Crespo

    (University of Cape Town)

  • Alex C. Ruane

    (National Aeronautics and Space Administration Goddard Institute for Space Studies)

  • Cynthia Rosenzweig

    (National Aeronautics and Space Administration Goddard Institute for Space Studies)

Abstract

Decision makers need accurate information to address climate variability and change and accelerate transformation to sustainability. A stakeholder-driven, science-based multi-model approach has been developed and used by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to generate actionable information for adaptation planning processes. For a range of mid-century climate projections—likely to be hotter, drier, and more variable—contrasting future socio-economic scenarios (Representative Agricultural Pathways, RAPs) were co-developed with stakeholders to portray a sustainable development scenario and a rapid economic growth pathway. The unique characteristic of this application is the integration of a multi-modeling approach with stakeholder engagement to co-develop scenarios and adaptation strategies. Distribution of outcomes were simulated with climate, crop, livestock, and economic impact assessment models for smallholder crop livestock farmers in a typical dryland agro-ecological zone in Zimbabwe, characterized by low and erratic rainfall and nutrient depleted soils. Results showed that in Nkayi District, Western Zimbabwe, climate change would threaten most of the farms, and, in particular, those with large cattle herds due to feed shortages. Adaptation strategies that showed the most promise included diversification using legume production, soil fertility improvement, and investment in conducive market environments. The switch to more legumes in the farming systems reduced the vulnerability of the very poor as well as the more resourced farmers. Overall, the sustainable development scenario consistently addressed institutional failures and motivated productivity-enhancing, environmentally sound technologies and inclusive development approaches. This yielded more favorable outcomes than investment in quick economic wins from commercializing agriculture.

Suggested Citation

  • Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:1:d:10.1007_s10584-021-03151-8
    DOI: 10.1007/s10584-021-03151-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03151-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03151-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
    2. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    3. Smith, Alex & Snapp, Sieglinde & Dimes, John & Gwenambira, Chiwimbo & Chikowo, Regis, 2016. "Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi," Agricultural Systems, Elsevier, vol. 145(C), pages 139-149.
    4. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    5. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    6. Henk A. J. Moll, 2005. "Costs and benefits of livestock systems and the role of market and nonmarket relationships," Agricultural Economics, International Association of Agricultural Economists, vol. 32(2), pages 181-193, March.
    7. Thornton, P.K. & van de Steeg, J. & Notenbaert, A. & Herrero, M., 2009. "The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know," Agricultural Systems, Elsevier, vol. 101(3), pages 113-127, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naomi di Santo & Ilaria Russo & Roberta Sisto, 2022. "Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming," Land, MDPI, vol. 11(12), pages 1-25, November.
    2. Emirjona Kertolli & Paolo Prosperi & Rachid Harbouze & Rachid Moussadek & Ghizlane Echchgadda & Hatem Belhouchette, 2024. "The water–energy–food–ecosystem nexus in North Africa dryland farming: a multi-criteria analysis of climate-resilient innovations in Morocco," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 12(1), pages 1-31, December.
    3. Ronner, E. & van de Ven, G.J. & Nowakunda, K. & Tugumisirize, J. & Kayiita, J. & Taulya, G. & Uckert, G. & Descheemaeker, K.K.E., 2023. "What future for banana-based farming systems in Uganda? A participatory scenario analysis," Agricultural Systems, Elsevier, vol. 209(C).
    4. Lucas da Costa Santos & Lucas Santos do Patrocínio Figueiró & Fabiani Denise Bender & Jefferson Vieira José & Adma Viana Santos & Julia Eduarda Araujo & Evandro Luiz Mendonça Machado & Ricardo Siqueir, 2024. "Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage," Sustainability, MDPI, vol. 16(11), pages 1-14, June.
    5. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    6. Máriam Abbas & Paulo Flores Ribeiro & José Lima Santos, 2023. "Farming system change under different climate scenarios and its impact on food security: an analytical framework to inform adaptation policy in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(8), pages 1-27, December.
    7. Zhang, Chao & Fan, Yupeng & Fang, Chuanglin, 2024. "Orderly and synergistic development of urban-rural integration based on evolutionary game model: A case study in the Jiangxi Province, China," Land Use Policy, Elsevier, vol. 146(C).
    8. Pratap S. Birthal & Jaweriah Hazrana & Digvijay S. Negi, 2021. "Effectiveness of Farmers’ Risk Management Strategies in Smallholder Agriculture: Evidence from India," Climatic Change, Springer, vol. 169(3), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    2. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    3. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    4. Nhantumbo, Nascimento S. & Zivale, Clemente O. & Nhantumbo, Ivete S. & Gomes, Ana M., 2016. "Making agricultural intervention attractive to farmers in Africa through inclusive innovation systems," World Development Perspectives, Elsevier, vol. 4(C), pages 19-23.
    5. Confidence Duku & Carlos Alho & Rik Leemans & Annemarie Groot, 2022. "IFAD Research Series 72: Climate change and food system activities - a review of emission trends, climate impacts and the effects of dietary change," IFAD Research Series 320722, International Fund for Agricultural Development (IFAD).
    6. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    7. Paul, B.K. & Frelat, R. & Birnholz, C. & Ebong, C. & Gahigi, A. & Groot, J.C.J. & Herrero, M. & Kagabo, D.M. & Notenbaert, A. & Vanlauwe, B. & van Wijk, M.T., 2018. "Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs," Agricultural Systems, Elsevier, vol. 163(C), pages 16-26.
    8. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    9. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    10. Nisha Subed & Samir Poudel, 2020. "Effects Of Climate Change On Agriculture And Its Mitigation Through Climate Smart Agriculture Practices In Nepal," Tropical Agrobiodiversity (TRAB), Zibeline International Publishing, vol. 1(1), pages 47-51, October.
    11. Victor O. Abegunde & Ajuruchukwu Obi, 2022. "The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    12. M. Melissa Rojas-Downing & A. Pouyan Nejadhashemi & Mohammad Abouali & Fariborz Daneshvar & Sabah Anwer Dawood Al Masraf & Matthew R. Herman & Timothy Harrigan & Zhen Zhang, 2018. "Pasture diversification to combat climate change impacts on grazing dairy production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 405-431, March.
    13. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    14. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    15. Lenyeletse V. Basupi & Claire H. Quinn & Andrew J. Dougill, 2017. "Pastoralism and Land Tenure Transformation in Sub-Saharan Africa: Conflicting Policies and Priorities in Ngamiland, Botswana," Land, MDPI, vol. 6(4), pages 1-17, December.
    16. Thomas Vendryes, 2014. "Peasants Against Private Property Rights: A Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 971-995, December.
    17. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    18. Kibria, Abu SMG & Costanza, Robert & Soto, José R, 2022. "Modeling the complex associations of human wellbeing dimensions in a coupled human-natural system: In contexts of marginalized communities," Ecological Modelling, Elsevier, vol. 466(C).
    19. Benjamin Bathfield & Pierre Gasselin & Rémy Vandame & Santiago López-Ridaura & Luís García Barrios, 2010. "Adaptation de la gestion technique des producteurs de café et de miel face aux variations de prix au Guatemala : concepts et méthodes," Post-Print hal-00783500, HAL.
    20. Alobo Loison, Sarah & Hillbom, Ellen, 2020. "Regional evidence of smallholder-based growth in Zambia’s livestock sector," World Development Perspectives, Elsevier, vol. 19(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:1:d:10.1007_s10584-021-03151-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.