IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v145y2016icp139-149.html
   My bibliography  Save this article

Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi

Author

Listed:
  • Smith, Alex
  • Snapp, Sieglinde
  • Dimes, John
  • Gwenambira, Chiwimbo
  • Chikowo, Regis

Abstract

Smallholder farmers in Malawi must cope with small farm size, low soil fertility and production risks associated with rainfed agriculture. Integration of legumes into maize-based cropping systems is advocated as a means to increase production of diverse nutrient-dense grains and improve soil fertility. It is difficult to achieve both aims simultaneously, however. Short-duration grain legumes rarely produce enough biomass to appreciatively improve soils, and long duration pigeonpea, commonly grown in Malawi as a dual purpose crop, produces little or no edible grain as a consequence of grain-filling into the dry season. A novel technology is the doubled-up legume rotation (DLR) system in which two legumes with complementary phenology are intercropped and grown in rotation with maize. Initial performance from on-farm research is favorable; however, it is crucial to understand competition for resources in mixed cropping systems under variable soil and climate conditions. We used soil and crop yield data from farmer participatory trials to parameterize the Agricultural Production Systems Simulator (APSIM) and evaluate its performance in simulating observed treatments at three locations in central Malawi. We used the calibrated APSIM model to investigate the performance of DLR and other maize-based systems across 26 growing seasons (1979–2005) in the three agroecologies. We simulated two DLR systems (maize rotated with a groundnut/pigeonpea or soybean/pigeonpea intercrop), maize rotated with groundnut or soybean, maize intercropped with pigeonpea, and continuous maize under a range of N fertilizer inputs. We extended findings to the household level by determining calorie and protein yields of these systems, and calculating the chance that an average household could meet their food requirements by dedicating all available farmland to a given system. Simulated maize grain yields in DLR and maize-grain legume rotations were essentially equivalent, and exceeded yields in maize/pigeonpea intercrop and sole cropped maize receiving comparable fertility inputs. All rotation systems were more likely to meet household calorie and protein needs than other systems receiving equivalent inputs. DLR systems accumulated higher total soil C and N over time than traditional rotation systems in areas where pigeonpea performed well. However, the effects of improved soil fertility on maize yields were counterbalanced by factors including N immobilization and water availability. We conclude that where growing conditions allow, DLR can harness the complementary phenology of pigeonpea to build soil quality for the future without reducing maize yields or compromising household food production in the immediate term.

Suggested Citation

  • Smith, Alex & Snapp, Sieglinde & Dimes, John & Gwenambira, Chiwimbo & Chikowo, Regis, 2016. "Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi," Agricultural Systems, Elsevier, vol. 145(C), pages 139-149.
  • Handle: RePEc:eee:agisys:v:145:y:2016:i:c:p:139-149
    DOI: 10.1016/j.agsy.2016.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16300488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xuan & Li, Zhou & Cui, Song & Cao, Quan & Deng, Jianqiang & Lai, Xingfa & Shen, Yuying, 2020. "Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs. continuous syst," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Komarek, Adam M. & Drogue, Sophie & Chenoune, Roza & Hawkins, James & Msangi, Siwa & Belhouchette, Hatem & Flichman, Guillermo, 2017. "Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi," Agricultural Systems, Elsevier, vol. 154(C), pages 168-178.
    3. Shimbahri Mesfin & Girmay Gebresamuel & Mitiku Haile & Amanuel Zenebe & Girma Desta, 2020. "Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    4. Anders, Erin J. & Zulu, Leo C. & Jambo, Emmanuel R., 2020. "Limits to grain-legume technology integration by smallholder farmers: The case of time-sensitive labor demands and food security primacy in Malawi," Agricultural Systems, Elsevier, vol. 184(C).
    5. Snapp, Sieglinde S. & Grabowski, Philip & Chikowo, Regis & Smith, Alex & Anders, Erin & Sirrine, Dorothy & Chimonyo, Vimbayi & Bekunda, Mateete, 2018. "Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?," Agricultural Systems, Elsevier, vol. 162(C), pages 77-88.
    6. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    7. Madembo, Connie & Mhlanga, Blessing & Thierfelder, Christian, 2020. "Productivity or stability? Exploring maize-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe," Agricultural Systems, Elsevier, vol. 185(C).
    8. Schaafsma, Marije & Ferrini, Silvia & Turner, R. Kerry, 2019. "Assessing smallholder preferences for incentivised climate-smart agriculture using a discrete choice experiment," Land Use Policy, Elsevier, vol. 88(C).
    9. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    10. Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
    11. Tendai P. Chibarabada & Albert T. Modi & Tafadzwanashe Mabhaudhi, 2017. "Expounding the Value of Grain Legumes in the Semi- and Arid Tropics," Sustainability, MDPI, vol. 9(1), pages 1-25, January.
    12. Zulu, Leo Charles & Adams, Ellis Adjei & Chikowo, Regis & Snapp, Sieglinde, 2018. "The role of community-based livestock management institutions in the adoption and scaling up of pigeon peas in Malawi," Food Policy, Elsevier, vol. 79(C), pages 141-155.
    13. Kinyua, M.W. & Kihara, J. & Bekunda, M. & Bolo, P. & Mairura, F.S. & Fischer, G. & Mucheru-Muna, M.W., 2023. "Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania," Agricultural Systems, Elsevier, vol. 205(C).
    14. Han Wang & Sieglinde S Snapp & Monica Fisher & Frederi Viens, 2019. "A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    15. Timothy R. Silberg & Robert B. Richardson & Maria Claudia Lopez, 2020. "Maize farmer preferences for intercropping systems to reduce Striga in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 269-283, April.
    16. Ayesa Akter Suhi & Shamim Mia & Salma Khanam & Mehedi Hasan Mithu & Md. Kamal Uddin & Md. Abdul Muktadir & Sultan Ahmed & Keiji Jindo, 2022. "How Does Maize-Cowpea Intercropping Maximize Land Use and Economic Return? A Field Trial in Bangladesh," Land, MDPI, vol. 11(4), pages 1-18, April.
    17. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    18. Grabowski, Philip & Schmitt Olabisi, Laura & Adebiyi, Jelili & Waldman, Kurt & Richardson, Robert & Rusinamhodzi, Leonard & Snapp, Sieglinde, 2019. "Assessing adoption potential in a risky environment: The case of perennial pigeonpea," Agricultural Systems, Elsevier, vol. 171(C), pages 89-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:145:y:2016:i:c:p:139-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.