IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i4d10.1007_s10584-018-2326-8.html
   My bibliography  Save this article

An integrated assessment of the potential impacts of climate change on Indiana forests

Author

Listed:
  • Richard P. Phillips

    (Indiana University)

  • Leslie Brandt

    (US Forest Service)

  • P. David Polly

    (Indiana University)

  • Patrick Zollner

    (Purdue University)

  • Michael R. Saunders

    (Purdue University)

  • Keith Clay

    (Indiana University)

  • Louis Iverson

    (US Forest Service)

  • Songlin Fei

    (Purdue University)

Abstract

Forests provide myriad ecosystem services, many of which are vital to local and regional economies. Consequently, there is a need to better understand how predicted changes in climate will impact forest dynamics and the implications of such changes for society as a whole. Here we focus on the impacts of climate change on Indiana forests, which are representative of many secondary growth broadleaved forests in the greater Midwest region in terms of their land use history and current composition. We found that predicted changes in climate for the state—warmer and wetter winters/springs and hotter and potentially drier summers—will dramatically shape forest communities, resulting in new assemblages of trees and wildlife that differ from forest communities of the past or present. Overall, suitable habitat is expected to decline for 17–29% of tree species and increase for 43–52% of tree species in the state, depending on the region and climate scenario. Such changes have important consequences for wildlife that depend on certain tree species or have ranges with strong sensitivities to climate. Additionally, these changes will have potential economic impacts on Indiana industries that depend on forest resources and products (both timber and non-timber). Finally, we offer some practical suggestions on how management may minimize the extent of climate-induced ecological impacts and highlight a case study from a tree planting initiative currently underway in the Patoka River National Wildlife Refuge and Management Area.

Suggested Citation

  • Richard P. Phillips & Leslie Brandt & P. David Polly & Patrick Zollner & Michael R. Saunders & Keith Clay & Louis Iverson & Songlin Fei, 2020. "An integrated assessment of the potential impacts of climate change on Indiana forests," Climatic Change, Springer, vol. 163(4), pages 1917-1931, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2326-8
    DOI: 10.1007/s10584-018-2326-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2326-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2326-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean P. Maher & Andrew M. Kramer & J. Tomlin Pulliam & Marcus A. Zokan & Sarah E. Bowden & Heather D. Barton & Krisztian Magori & John M. Drake, 2012. "Spread of white-nose syndrome on a network regulated by geography and climate," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Tom H. Oliver & Mike D. Morecroft, 2014. "Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(3), pages 317-335, May.
    3. Babin-Fenske, Jennifer & Anand, Madhur, 2011. "Agent-based simulation of effects of stress on forest tent caterpillar (Malacosoma disstria Hübner) population dynamics," Ecological Modelling, Elsevier, vol. 222(14), pages 2561-2569.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Patriarca & Eros Caputi & Lorenzo Gatti & Ernesto Marcheggiani & Fabio Recanatesi & Carlo Maria Rossi & Maria Nicolina Ripa, 2024. "Wide-Scale Identification of Small Woody Features of Landscape from Remote Sensing," Land, MDPI, vol. 13(8), pages 1-20, July.
    2. Felix Neff & Fränzi Korner-Nievergelt & Emmanuel Rey & Matthias Albrecht & Kurt Bollmann & Fabian Cahenzli & Yannick Chittaro & Martin M. Gossner & Carlos Martínez-Núñez & Eliane S. Meier & Christian , 2022. "Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Adeyeri, Oluwafemi E. & Zhou, Wen & Laux, Patrick & Wang, Xuan & Dieng, Diarra & Widana, Lakshani A.E. & Usman, Muhammad, 2023. "Land use and land cover dynamics: Implications for thermal stress and energy demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Owen P. McKenna & Samuel R. Kucia & David M. Mushet & Michael J. Anteau & Mark T. Wiltermuth, 2019. "Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    5. Uchmański, Janusz, 2019. "Cyclic outbreaks of forest insects: A two-dimensional individual-based model," Theoretical Population Biology, Elsevier, vol. 128(C), pages 1-18.
    6. Bjelle, Eivind Lekve & Kuipers, Koen & Verones, Francesca & Wood, Richard, 2021. "Trends in national biodiversity footprints of land use," Ecological Economics, Elsevier, vol. 185(C).
    7. Isabella Aitkenhead & Yuriy Kuleshov & Andrew B. Watkins & Jessica Bhardwaj & Atifa Asghari, 2021. "Assessing agricultural drought management strategies in the Northern Murray–Darling Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1425-1455, November.
    8. Bone, Christopher & Altaweel, Mark, 2014. "Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics," Ecological Modelling, Elsevier, vol. 289(C), pages 45-58.
    9. Prabhakar, S.V.R.K., 2021. "A succinct review and analysis of drivers and impacts of agricultural land transformations in Asia," Land Use Policy, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2326-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.