IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i14p2561-2569.html
   My bibliography  Save this article

Agent-based simulation of effects of stress on forest tent caterpillar (Malacosoma disstria Hübner) population dynamics

Author

Listed:
  • Babin-Fenske, Jennifer
  • Anand, Madhur

Abstract

The forest tent caterpillar (Malacosoma disstria Hübner) (FTC) has an outbreak cycle of approximately 10 years; however, smaller spatial scale analyses show some regions have longer or more frequent periods of high defoliation. This may be a result of local forest fragmentation, pollution or other sources of stress that may affect FTC directly or indirectly through stress on their hosts or parasitoids. Population dynamics of FTC were examined to investigate how stress may alter the severity and frequency of defoliation. We developed a spatially explicit agent-based model to simulate the host–parasitoid dynamics of FTC. Theoretical and empirically derived parameters were established using past literature and over 50 years of population data of FTC from Ontario, Canada. We find that increasing FTC fecundity, FTC dispersal or parasitoid mortality resulted in more severe outbreaks while a decrease in parasitoid fecundity or searching efficiency resulted in an overall elevation of defoliation. Parasitoid efficiency was the most effective parameter for altering the FTC defoliation. Since plant stress has been shown to alter several of these parameters in nature due to changes in food quality, habitat suitability, and chemical cue interference, our results suggest that forests affected by stressors such as climate change and pollution will have more severe and frequent defoliation from these insects than surrounding unaffected forests. As stressors such as drought and pollution emissions are predicted to increase in frequency or intensity over the next few decades, understanding how they may affect the outbreak cycle of a forest defoliator can aid in planning strategies to reduce the detrimental effects of this insect.

Suggested Citation

  • Babin-Fenske, Jennifer & Anand, Madhur, 2011. "Agent-based simulation of effects of stress on forest tent caterpillar (Malacosoma disstria Hübner) population dynamics," Ecological Modelling, Elsevier, vol. 222(14), pages 2561-2569.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2561-2569
    DOI: 10.1016/j.ecolmodel.2011.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens Roland & Philip D. Taylor, 1997. "Insect parasitoid species respond to forest structure at different spatial scales," Nature, Nature, vol. 386(6626), pages 710-713, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard P. Phillips & Leslie Brandt & P. David Polly & Patrick Zollner & Michael R. Saunders & Keith Clay & Louis Iverson & Songlin Fei, 2020. "An integrated assessment of the potential impacts of climate change on Indiana forests," Climatic Change, Springer, vol. 163(4), pages 1917-1931, December.
    2. Uchmański, Janusz, 2019. "Cyclic outbreaks of forest insects: A two-dimensional individual-based model," Theoretical Population Biology, Elsevier, vol. 128(C), pages 1-18.
    3. Bone, Christopher & Altaweel, Mark, 2014. "Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics," Ecological Modelling, Elsevier, vol. 289(C), pages 45-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stallman, Heidi R. & James, Harvey S., 2015. "Determinants affecting farmers' willingness to cooperate to control pests," Ecological Economics, Elsevier, vol. 117(C), pages 182-192.
    2. Laura E Farrell & Daniel M Levy & Therese Donovan & Ruth Mickey & Alan Howard & Jennifer Vashon & Mark Freeman & Kim Royar & C William Kilpatrick, 2018. "Landscape connectivity for bobcat (Lynx rufus) and lynx (Lynx canadensis) in the Northeastern United States," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-25, March.
    3. Cobbold, Christina A. & Roland, Jens & Lewis, Mark A., 2009. "The impact of parasitoid emergence time on host–parasitoid population dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 201-215.
    4. Noel G Hahn & Cesar Rodriguez-Saona & George C Hamilton, 2017. "Characterizing the spatial distribution of brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), populations in peach orchards," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2561-2569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.