IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i4d10.1007_s10584-018-2309-9.html
   My bibliography  Save this article

Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling

Author

Listed:
  • Alan F. Hamlet

    (University of Notre Dame)

  • Kyuhyun Byun

    (University of Notre Dame)

  • Scott M. Robeson

    (Indiana University Bloomington)

  • Melissa Widhalm

    (Purdue University)

  • Michael Baldwin

    (Purdue University)

Abstract

Using an ensemble of 10 statistically downscaled global climate model (GCM) simulations, we project future climate change impacts on the state of Indiana (IN) for two scenarios of greenhouse gas concentrations (a medium scenario—RCP4.5 and a high scenario—RCP 8.5) for three future time periods (2020s, 2050s, 2080s). Relative to a 1971–2000 baseline, the projections show substantial changes in temperature (T) for IN, with a change in the annual ensemble mean T for the 2080s RCP8.5 scenario of about 5.6 °C (10.1 °F). Such changes also indicate major changes in T extremes. For southern IN, the number of days with daily maximum T above 35 °C (95 °F) is projected to be about 100 days per year for the 2080s RCP8.5 scenario, as opposed to an average of 5 days for the historical baseline climate. Locations in northern IN could experience 50 days per year above 35 °C (95 °F) for the same conditions. Energy demand for cooling, as measured by cooling degree days (CDD), is projected to increase nearly fourfold in response to this extreme warming, but heating demand as measured by heating degree days (HDD) is projected to decline by 30%, which would result in a net reduction in annual heating/cooling energy demand for consumers. The length of the growing season is projected to increase by about 30 to 50 days by the 2080s for the RCP8.5 scenario, and USDA hardiness zones are projected to shift by about one full zone throughout IN. By the 2080s, all GCM simulations for the RCP8.5 scenario show higher annual precipitation (P) over the Midwest and IN. Projected seasonal changes in P include a 25–30% increase in winter and spring by the 2080s for the RCP8.5 scenarios and a 1–7% decline in summer and fall P (although there is a low model agreement in the latter two seasons). Rising T is projected to cause systematic decreases in the snow-to-rain ratio from Nov-Mar. Snow is projected to become uncommon in southern IN by the 2080s for the RCP8.5 scenario, and snowfall is substantially reduced in other areas of the state. The combined effects of these changes in T, P, and snowfall will likely result in increased surface runoff and flooding during winter and spring.

Suggested Citation

  • Alan F. Hamlet & Kyuhyun Byun & Scott M. Robeson & Melissa Widhalm & Michael Baldwin, 2020. "Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling," Climatic Change, Springer, vol. 163(4), pages 1881-1895, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2309-9
    DOI: 10.1007/s10584-018-2309-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2309-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2309-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathaniel D. Mueller & Ethan E. Butler & Karen A. McKinnon & Andrew Rhines & Martin Tingley & N. Michele Holbrook & Peter Huybers, 2016. "Cooling of US Midwest summer temperature extremes from cropland intensification," Nature Climate Change, Nature, vol. 6(3), pages 317-322, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    2. Reyhaneh Rahimi & Hassan Tavakol-Davani & Mohsen Nasseri, 2021. "An Uncertainty-Based Regional Comparative Analysis on the Performance of Different Bias Correction Methods in Statistical Downscaling of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2503-2518, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    2. Daniel Althoff & Lineu Neiva Rodrigues & Demetrius David Silva, 2020. "Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah," Climatic Change, Springer, vol. 159(2), pages 215-232, March.
    3. Laura C. Bowling & Keith A. Cherkauer & Charlotte I. Lee & Janna L. Beckerman & Sylvie Brouder & Jonathan R. Buzan & Otto C. Doering & Jeffrey S. Dukes & Paul D. Ebner & Jane R. Frankenberger & Benjam, 2020. "Agricultural impacts of climate change in Indiana and potential adaptations," Climatic Change, Springer, vol. 163(4), pages 2005-2027, December.
    4. Koffi Djaman & Curtis Owen & Margaret M. West & Samuel Allen & Komlan Koudahe & Murali Darapuneni & Michael O’Neill, 2020. "Relationship between Relative Maturity and Grain Yield of Maize ( Zea mays L.) Hybrids in Northwest New Mexico for the 2003–2019 Period," Agriculture, MDPI, vol. 10(7), pages 1-12, July.
    5. Yang, Meijian & Wang, Guiling, 2023. "Heat stress to jeopardize crop production in the US Corn Belt based on downscaled CMIP5 projections," Agricultural Systems, Elsevier, vol. 211(C).
    6. Magdalena Cornejo & Nicolás Merener & Ezequiel Merovich, 2024. "Extreme Dry Spells and Larger Storms in the U.S. Midwest Raise Crop Prices," Working Papers 303, Red Nacional de Investigadores en Economía (RedNIE).
    7. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yao, Xiaochen & Zhang, Zhiyu & Yuan, Fenghui & Song, Changchun, 2024. "The impact of global cropland irrigation on soil carbon dynamics," Agricultural Water Management, Elsevier, vol. 296(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2309-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.