IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i4d10.1007_s10584-020-02816-0.html
   My bibliography  Save this article

Evaluating the Portuguese diet in the pursuit of a lower carbon and healthier consumption pattern

Author

Listed:
  • Xavier Esteve-Llorens

    (Universidade de Santiago de Compostela)

  • Ana Cláudia Dias

    (University of Aveiro)

  • Maria Teresa Moreira

    (Universidade de Santiago de Compostela)

  • Gumersindo Feijoo

    (Universidade de Santiago de Compostela)

  • Sara González-García

    (Universidade de Santiago de Compostela)

Abstract

There is growing concern about the nutritional quality and the environmental impact of the food we eat. Although the population is increasingly aware of adhering to diets that meet these requirements, the reality is that current dietary patterns deviate greatly from these recommendations. In the case of Portugal, the Mediterranean and Atlantic diets have traditionally coexisted in the country but it is predictable that current consumption patterns do not conform to them. Accordingly, the present research has a dual objective, taking the Portuguese dietary pattern as a case study. First, sustainability in terms of environmental and health impacts is monitored over a 9-year period (2008–2016), including the stages of production, distribution, and household activities. Secondly, an example of alternative diet is proposed in the pursuit of a more sustainable dietary pattern. The carbon footprint from a life cycle perspective has been selected for the environmental impact assessment and the Nutrient Rich Diet 9.3 index for the analysis of the nutritional quality. An average value of 4.20 kg CO2 eq·inhabitant−1·day−1 is reported for the Portuguese diet for the period under study. Regarding the alternative diet proposal, it leads to an increase of the nutritional quality of around 67%, and a reduction of the carbon footprint by approximately 25%, approaching the values of recommended diets such as the Mediterranean and the Atlantic ones. This research can serve as a reference for decision-makers, as well as to provide consumers with a clearer picture of what should be included in their food basket.

Suggested Citation

  • Xavier Esteve-Llorens & Ana Cláudia Dias & Maria Teresa Moreira & Gumersindo Feijoo & Sara González-García, 2020. "Evaluating the Portuguese diet in the pursuit of a lower carbon and healthier consumption pattern," Climatic Change, Springer, vol. 162(4), pages 2397-2409, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02816-0
    DOI: 10.1007/s10584-020-02816-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02816-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02816-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florent Vieux & Nicole N. Darmon & Djilali Touazi & Louis Georges Soler, 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the Q23 diet structure or consuming less?," Post-Print hal-02649979, HAL.
    2. Arnold Tukker & Bart Jansen, 2006. "Environmental Impacts of Products: A Detailed Review of Studies," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 159-182, July.
    3. Arrieta, E.M. & González, A.D., 2018. "Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina," Food Policy, Elsevier, vol. 79(C), pages 58-66.
    4. van Dooren, C. & Marinussen, Mari & Blonk, Hans & Aiking, Harry & Vellinga, Pier, 2014. "Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns," Food Policy, Elsevier, vol. 44(C), pages 36-46.
    5. Vieux, F. & Darmon, N. & Touazi, D. & Soler, L.G., 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less?," Ecological Economics, Elsevier, vol. 75(C), pages 91-101.
    6. Faye Duchin, 2005. "Sustainable Consumption of Food: A Framework for Analyzing Scenarios about Changes in Diets," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 99-114, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Kustar & Dalia Patino-Echeverri, 2021. "A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    2. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    3. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(1), pages 117-146.
    4. van Dooren, C. & Keuchenius, C. & de Vries, J.H.M. & de Boer, J. & Aiking, H., 2018. "Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands," Food Policy, Elsevier, vol. 79(C), pages 44-57.
    5. Doro, Erica & Réquillart, Vincent, 2018. "Sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," TSE Working Papers 18-913, Toulouse School of Economics (TSE).
    6. Hadjikakou, Michalis, 2017. "Trimming the excess: environmental impacts of discretionary food consumption in Australia," Ecological Economics, Elsevier, vol. 131(C), pages 119-128.
    7. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    8. Xiaoke Yang & Zhihang Zhang & Huangyixin Chen & Rongrong Zhao & Zhongyue Xu & Anguo Xie & Qiuhua Chen, 2019. "Assessing the Carbon Emission Driven by the Consumption of Carbohydrate-Rich Foods: The Case of China," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    9. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    10. van Dooren, Corné & Douma, Annely & Aiking, Harry & Vellinga, Pier, 2017. "Proposing a Novel Index Reflecting Both Climate Impact and Nutritional Impact of Food Products," Ecological Economics, Elsevier, vol. 131(C), pages 389-398.
    11. van Dooren, C. & Marinussen, Mari & Blonk, Hans & Aiking, Harry & Vellinga, Pier, 2014. "Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns," Food Policy, Elsevier, vol. 44(C), pages 36-46.
    12. Corné Van Dooren & Marcelo Tyszler & Gerard F. H. Kramer & Harry Aiking, 2015. "Combining Low Price, Low Climate Impact and High Nutritional Value in One Shopping Basket through Diet Optimization by Linear Programming," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
    13. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    14. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    15. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    16. Anthony Fardet & Edmond Rock, 2020. "Ultra-Processed Foods and Food System Sustainability: What Are the Links?," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    17. Cavaliere, Alessia & De Marchi, Elisa & Frola, Enrica Nadia & Benfenati, Alessandro & Aletti, Giacomo & Bacenetti, Jacopo & Banterle, Alessandro, 2023. "Exploring the environmental impact associated with the abandonment of the Mediterranean Diet, and how to reduce it with alternative sustainable diets," Ecological Economics, Elsevier, vol. 209(C).
    18. Claire Lamine & Danièle Magda & Marie-Josèphe Amiot, 2019. "Crossing Sociological, Ecological, and Nutritional Perspectives on Agrifood Systems Transitions: Towards a Transdisciplinary Territorial Approach," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    19. Xavier Irz & Pascal Leroy & Vincent V. Requillart & Louis Georges Soler & Olivier Allais, 2013. "Identifying sustainable diets compatible with consumer preferences [Identification de régimes alimentaires durables compatibles avec les préférences des consommateurs]," Post-Print hal-02804826, HAL.
    20. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02816-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.