IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v157y2019i2d10.1007_s10584-019-02519-1.html
   My bibliography  Save this article

The impact of temperature on mortality across different climate zones

Author

Listed:
  • Thomas Longden

    (University of Technology Sydney)

Abstract

There are numerous studies that have estimated the number of deaths attributable to heat and cold using city-level or provincial-level data. However, none of these studies have assessed temperature-mortality relationships using meteorological climate zones and data that covers an entire population/country. This analysis uses a national data set of death records to create time-series data for different regional aggregations. Temperature-mortality relationships are estimated using this data set of 1,717,224 deaths, which covers the whole of Australia between 2006 and 2017. This paper finds that the majority of deaths related to temperature in Australia are caused by heat. It also finds that the reference temperature used to separate impacts into heat-/cold-related mortality has a notable impact on the magnitude of these estimates. Previous studies (using the same methodology) found that most of the temperature-related mortality burden in Australia was attributed to cold temperatures. This led to studies that associated this with a net benefit from climate change. This analysis indicates that studies that found net benefits from climate change need to be re-assessed, especially for Australia and warmer climate zones.

Suggested Citation

  • Thomas Longden, 2019. "The impact of temperature on mortality across different climate zones," Climatic Change, Springer, vol. 157(2), pages 221-242, November.
  • Handle: RePEc:spr:climat:v:157:y:2019:i:2:d:10.1007_s10584-019-02519-1
    DOI: 10.1007/s10584-019-02519-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02519-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02519-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Maria Vicedo-Cabrera & Yuming Guo & Francesco Sera & Veronika Huber & Carl-Friedrich Schleussner & Dann Mitchell & Shilu Tong & Micheline de Sousa Zanotti Stagliorio Coelho & Paulo Hilario Nascime, 2018. "Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios," Climatic Change, Springer, vol. 150(3), pages 391-402, October.
    2. Ackerman, Frank & Stanton, Elizabeth A., 2008. "A comment on "Economy-wide estimates of the implications of climate change: Human health"," Ecological Economics, Elsevier, vol. 66(1), pages 8-13, May.
    3. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, January.
    4. Martens, W. J. M., 1998. "Climate change, thermal stress and mortality changes," Social Science & Medicine, Elsevier, vol. 46(3), pages 331-344, February.
    5. Ackerman, Frank & Stanton, Elizabeth A. & Hope, Chris & Alberth, Stephane, 2009. "Did the Stern Review underestimate US and global climate damages?," Energy Policy, Elsevier, vol. 37(7), pages 2717-2721, July.
    6. Alan Barreca & Karen Clay & Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2015. "Convergence in Adaptation to Climate Change: Evidence from High Temperatures and Mortality, 1900-2004," American Economic Review, American Economic Association, vol. 105(5), pages 247-251, May.
    7. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    8. Thomas Longden, 2018. "Measuring temperature-related mortality using endogenously determined thresholds," Climatic Change, Springer, vol. 150(3), pages 343-375, October.
    9. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    10. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    11. Gyuseok Sim & Ho Kim & Antonella Zanobetti & Joel Schwartz & Yeonseung Chung, 2018. "Non‐parametric Bayesian multivariate metaregression: an application in environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 881-896, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    2. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    3. Jeremy B. Trombley & Kamaljit K. Sangha & Alan N. Andersen & Suresh N. Thennadil, 2023. "Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Simon Quilty & Aparna Lal & Bridget Honan & Dan Chateau & Elen O’Donnell & Jodie Mills, 2024. "The Impact of Climate Change on Aeromedical Retrieval Services in Remote Northern Australia: Planning for a Hotter Future," IJERPH, MDPI, vol. 21(1), pages 1-12, January.
    5. Lee V. White & Bradley Riley & Sally Wilson & Francis Markham & Lily O’Neill & Michael Klerck & Vanessa Napaltjari Davis, 2024. "Geographies of regulatory disparity underlying Australia’s energy transition," Nature Energy, Nature, vol. 9(1), pages 92-105, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2018. "Misfortunes never come singly: Consecutive weather shocks and mortality in Russia," Economics & Human Biology, Elsevier, vol. 31(C), pages 249-258.
    2. Raimi, Daniel, 2021. "Effects of Climate Change on Heat- and Cold-Related Mortality: A Literature Review to Inform Updated Estimates of the Social Cost of Carbon," RFF Working Paper Series 21-12, Resources for the Future.
    3. Kiridaran Kanagaretnam & Gerald Lobo & Lei Zhang, 2022. "Relationship Between Climate Risk and Physical and Organizational Capital," Management International Review, Springer, vol. 62(2), pages 245-283, April.
    4. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    5. Veronika Huber & Dolores Ibarreta & Katja Frieler, 2017. "Cold- and heat-related mortality: a cautionary note on current damage functions with net benefits from climate change," Climatic Change, Springer, vol. 142(3), pages 407-418, June.
    6. Thomas Longden, 2018. "Measuring temperature-related mortality using endogenously determined thresholds," Climatic Change, Springer, vol. 150(3), pages 343-375, October.
    7. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    8. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    9. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    10. Olivier Deschenes, 2022. "The impact of climate change on mortality in the United States: Benefits and costs of adaptation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1227-1249, August.
    11. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    12. Louis-Gaëtan Giraudet & Céline Guivarch, 2016. "Global warming as an asymmetric public bad," Working Papers 2016.26, FAERE - French Association of Environmental and Resource Economists.
    13. Giuliano Masiero & Fabrizio Mazzonna & Michael Santarossa, 2022. "The effect of absolute versus relative temperature on health and the role of social care," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1228-1248, June.
    14. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    15. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    16. Karlsson, Martin & Ziebarth, Nicolas R., 2018. "Population health effects and health-related costs of extreme temperatures: Comprehensive evidence from Germany," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 93-117.
    17. García-Witulski, Christian & Rabassa, Mariano Javier & Conte Grand, Mariana & Rozenberg, Julie, 2023. "Valuing mortality attributable to present and future temperature extremes in Argentina," Economics & Human Biology, Elsevier, vol. 51(C).
    18. Lei Zhang & Kiridaran Kanagaretnam & Jing Gao, 2024. "Climate Change Social Norms and Corporate Cash Holdings," Journal of Business Ethics, Springer, vol. 190(3), pages 661-683, March.
    19. Casey J. Wichman, 2018. "Interpreting nonlinear semi-elasticities in reduced-form climate damage estimation," Climatic Change, Springer, vol. 148(4), pages 641-648, June.
    20. Adrian Chadi, 2017. "There Is No Place like Work: Evidence on Health and Labor Market Behavior from Changing Weather Conditions," IAAEU Discussion Papers 201709, Institute of Labour Law and Industrial Relations in the European Union (IAAEU).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:157:y:2019:i:2:d:10.1007_s10584-019-02519-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.