IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v147y2018i3d10.1007_s10584-018-2142-1.html
   My bibliography  Save this article

Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California

Author

Listed:
  • Charlotte Y. Stanton

    (Carnegie Institution for Science)

  • Katharine J. Mach

    (Stanford University)

  • Peter A. Turner

    (Carnegie Institution for Science)

  • Seth J. Lalonde

    (Carnegie Institution for Science)

  • Daniel L. Sanchez

    (Carnegie Institution for Science)

  • Christopher B. Field

    (Stanford University)

Abstract

Understanding the magnitude of and uncertainty around soil carbon flux (SCF) is important in light of California’s efforts to increase SCF (from the atmosphere to soils) for climate change mitigation. SCF depends, to a great extent, on how soils are managed. Here, we summarize the results of an elicitation of soil science and carbon cycle experts aiming to characterize understanding of current SCF in California’s cropland and rangeland, and how it may respond to alternative management practices over time. We considered four cropland management practices—biochar, compost, cover crops, and no-till—and two rangeland management practices, compost and high-impact grazing. Results across all management practices reveal underlying uncertainties as well as very modest opportunities for soil carbon management to contribute meaningfully to California’s climate mitigation. Under median scenarios, experts expect all the surveyed management practices to reverse SCF from negative to positive, with direct carbon additions via biochar and compost offering the best potential for boosting the soil carbon pool.

Suggested Citation

  • Charlotte Y. Stanton & Katharine J. Mach & Peter A. Turner & Seth J. Lalonde & Daniel L. Sanchez & Christopher B. Field, 2018. "Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California," Climatic Change, Springer, vol. 147(3), pages 633-646, April.
  • Handle: RePEc:spr:climat:v:147:y:2018:i:3:d:10.1007_s10584-018-2142-1
    DOI: 10.1007/s10584-018-2142-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2142-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2142-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Chabbi & J. Lehmann & P. Ciais & H. W. Loescher & M. F. Cotrufo & A. Don & M. SanClements & L. Schipper & J. Six & P. Smith & C. Rumpel, 2017. "Aligning agriculture and climate policy," Nature Climate Change, Nature, vol. 7(5), pages 307-309, May.
    2. McKellar, Jennifer M. & Sleep, Sylvia & Bergerson, Joule A. & MacLean, Heather L., 2017. "Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation," Energy Policy, Elsevier, vol. 100(C), pages 162-169.
    3. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    4. I. Stavi, 2012. "The potential use of biochar in reclaiming degraded rangelands," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(5), pages 657-665, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravjit Khangura & David Ferris & Cameron Wagg & Jamie Bowyer, 2023. "Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health," Sustainability, MDPI, vol. 15(3), pages 1-41, January.
    2. OKORIE, Benedict Odinaka & NIRAJ, Yadav, 2022. "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    3. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    4. Veltman, Karin & Rotz, C. Alan & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Larson, Rebecca A. & Ruark, Matt & Salas, William & Thoma, 2018. "A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region," Agricultural Systems, Elsevier, vol. 166(C), pages 10-25.
    5. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Van Wyngaarden, Sarah & Anders, Sven M., 2021. "Canadian Farmer Policy and Agency Preferences in Agri-Environmental Best Management Practice Adoption," 2021 Annual Meeting, August 1-3, Austin, Texas 313851, Agricultural and Applied Economics Association.
    7. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    8. Juan Cruz Colazo & Juan de Dios Herrero & Ricardo Sager & Maria Laura Guzmán & Mohammad Zaman, 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina," Land, MDPI, vol. 11(11), pages 1-11, November.
    9. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    10. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    11. Oscar Widerberg & Idil Boran & Sander Chan & Andrew Deneault & Marcel Kok & Katarzyna Negacz & Philipp Pattberg & Matilda Petersson, 2023. "Finding synergies and trade‐offs when linking biodiversity and climate change through cooperative initiatives," Global Policy, London School of Economics and Political Science, vol. 14(1), pages 157-161, February.
    12. Jin Zhang & Lan-Fang Wu, 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    13. Francesco Calzarano & Fabio Stagnari & Sara D’Egidio & Giancarlo Pagnani & Angelica Galieni & Stefano Di Marco & Elisa Giorgia Metruccio & Michele Pisante, 2018. "Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture," Agriculture, MDPI, vol. 8(9), pages 1-13, September.
    14. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    15. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    16. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    17. Elsadig Omer & Dora Szlatenyi & Sándor Csenki & Jomana Alrwashdeh & Ivan Czako & Vince Láng, 2024. "Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review," Agriculture, MDPI, vol. 14(12), pages 1-27, November.
    18. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    19. Liangang Xiao & Minglei Ding & Chong Wei & Ruiming Zhu & Rongqin Zhao, 2020. "The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    20. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:147:y:2018:i:3:d:10.1007_s10584-018-2142-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.