IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v138y2016i1d10.1007_s10584-016-1732-z.html
   My bibliography  Save this article

Risk matrix approach useful in adapting agriculture to climate change

Author

Listed:
  • David H. Cobon

    (University of Southern Queensland)

  • Allyson A. J. Williams

    (University of Southern Queensland)

  • Brendan Power

    (CSIRO)

  • David McRae

    (University of Southern Queensland)

  • Peter Davis

    (University of Southern Queensland)

Abstract

A risk management approach to assessing climate change impacts was completed for grazing, wheat and sorghum production systems in eastern Australia. This ‘risk matrix’ approach for wheat and sorghum was compared to results from simulation modelling of the impacts of projected climate change from general circulation models (GCM’s). In the modelling we used five GCM’s, the A1FI emissions scenario and a baseline climate (historical, 1960–2010); both the ‘risk matrix’ approach and modelling used a time horizon of 2030. While some people find the risk matrix process a highly effective tool for assessing climate change impacts others question its utility without the support of quantitative data such as that produced from integrated climate and agricultural models. Here we show the impacts of climate change on wheat and sorghum production systems using both approaches, and also show the risk, adaptation responses and vulnerability of all three production systems using the ‘risk matrix’ approach. Advantages and disadvantages of each approach are identified. The independent assessment showed the two approaches produced similar results. The ‘risk matrix’ showed little overall impact, risk or vulnerability for the central slopes from climate change using the adaptation strategies currently available for yield, protein levels, pests and disease, weeds and soil condition. The simulation modelling showed no statistically significant impact on yield, drainage, erosion and runoff, although more high-end extremes were evident. The risks to 2030 from anthropogenic climate change can largely be managed by continuing to implement best management practice and managing the risks already posed by climate variability. The ‘risk matrix’ approach was a useful tool under these circumstances to assess the impacts, adaptation, risk and vulnerability of climate change in the absence of local modelling information, and demonstrates the power of expert opinion to help understand and respond to climate change at the regional scale.

Suggested Citation

  • David H. Cobon & Allyson A. J. Williams & Brendan Power & David McRae & Peter Davis, 2016. "Risk matrix approach useful in adapting agriculture to climate change," Climatic Change, Springer, vol. 138(1), pages 173-189, September.
  • Handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1732-z
    DOI: 10.1007/s10584-016-1732-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1732-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1732-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    2. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    3. Luo, Qunying & Williams, Martin A. J. & Bellotti, William & Bryan, Brett, 2003. "Quantitative and visual assessments of climate change impacts on South Australian wheat production," Agricultural Systems, Elsevier, vol. 77(3), pages 173-186, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Adynkiewicz-Piragas & Bartłomiej Miszuk, 2020. "Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    2. Theodoros Katopodis & Emmanuel D. Adamides & Athanasios Sfetsos & Antonios Mountouris, 2021. "Incorporating Future Climate Scenarios in Oil Industry’s Risk Assessment: A Greek Refinery Case Study," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    2. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    3. Brett A Bryan & Jianjun Huai & Jeff Connor & Lei Gao & Darran King & John Kandulu & Gang Zhao, 2015. "What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    4. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    5. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    6. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    7. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    8. Jianjun Huai, 2016. "Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    9. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    10. Muhammad Aamir Khan & Alishba Tahir & Nabila Khurshid & Muhammad Iftikhar ul Husnain & Mukhtar Ahmed & Houcine Boughanmi, 2020. "Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    11. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    12. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    13. Sajjad Ali & Liu Ying & Tariq Shah & Azam Tariq & Abbas Ali Chandio & Ihsan Ali, 2019. "Analysis of the Nexus of CO 2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach," Energies, MDPI, vol. 12(23), pages 1-18, December.
    14. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.
    15. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).
    16. Meng, Ting & Carew, Richard C. & Florkowski, Wojciech J. & Klepacka, Anna M., 2016. "Modeling Temperature and Precipitation Influences on Yield Distributions of Canola and Spring Wheat in Saskatchewan," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235251, Agricultural and Applied Economics Association.
    17. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    18. Qunying Luo & Li Wen & John McGregor & Bertrand Timbal, 2013. "A comparison of downscaling techniques in the projection of local climate change and wheat yields," Climatic Change, Springer, vol. 120(1), pages 249-261, September.
    19. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    20. Chen, Chao & Fletcher, Andrew & Ota, Noboru & Oliver, Yvette & Lawes, Roger, 2023. "Integrating long fallow into wheat-based cropping systems in Western Australia: Spatial pattern of yield and economic responses," Agricultural Systems, Elsevier, vol. 204(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1732-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.