IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i2p325-339.html
   My bibliography  Save this article

Predicting large wildfires across western North America by modeling seasonal variation in soil water balance

Author

Listed:
  • Richard Waring
  • Nicholas Coops

Abstract

A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution >10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA’s Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000–2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water (fASW) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial. Copyright The Author(s) 2016

Suggested Citation

  • Richard Waring & Nicholas Coops, 2016. "Predicting large wildfires across western North America by modeling seasonal variation in soil water balance," Climatic Change, Springer, vol. 135(2), pages 325-339, March.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:2:p:325-339
    DOI: 10.1007/s10584-015-1569-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1569-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1569-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip E Higuera & John T Abatzoglou & Jeremy S Littell & Penelope Morgan, 2015. "The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. Peterman, Wendy & Bachelet, Dominique & Ferschweiler, Ken & Sheehan, Timothy, 2014. "Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model," Ecological Modelling, Elsevier, vol. 294(C), pages 84-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathys, A.S. & Coops, N.C. & Simard, S.W. & Waring, R.H. & Aitken, S.N., 2018. "Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia," Ecological Modelling, Elsevier, vol. 384(C), pages 145-153.
    2. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard H. Waring & Nicholas C. Coops, 2016. "Predicting large wildfires across western North America by modeling seasonal variation in soil water balance," Climatic Change, Springer, vol. 135(2), pages 325-339, March.
    2. Alexandra D Syphard & Timothy Sheehan & Heather Rustigian-Romsos & Kenneth Ferschweiler, 2018. "Mapping future fire probability under climate change: Does vegetation matter?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    3. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    4. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    5. David Turner & David Conklin & John Bolte, 2015. "Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA," Climatic Change, Springer, vol. 133(2), pages 335-348, November.
    6. Guo, Tong & Weise, Hanna & Fiedler, Sebastian & Lohmann, Dirk & Tietjen, Britta, 2018. "The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas," Ecological Modelling, Elsevier, vol. 379(C), pages 1-9.
    7. Saeedeh Eskandari & Hooman Ravanbakhsh & Yazdanfar Ahangaran & Zolfaghar Rezapour & Hamid Reza Pourghasemi, 2023. "Effect of climate change on fire regimes in natural resources of northern Iran: investigation of spatiotemporal relationships using regression and data mining models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 497-521, October.
    8. Sheehan, T. & Bachelet, D. & Ferschweiler, K., 2015. "Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures," Ecological Modelling, Elsevier, vol. 317(C), pages 16-29.
    9. Henne, Paul D. & Hawbaker, Todd J., 2023. "An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA," Ecological Modelling, Elsevier, vol. 477(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:2:p:325-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.